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7. Summary
This paper provides an in-depth analysis of the urgent need
for fine-grained image stylization in practical applications.
Considering the limitations of existing methods in handling
fine-grained image stylization tasks, we propose a novel
model, CO-PAINTER. This model can finely decouple the
attributes of reference images implicitly and adaptively in-
ject them into the diffusion model. Extensive experiments
demonstrate that the proposed model achieves an optimal
balance between text alignment and style similarity to ref-
erence images in standard and fine-grained settings.

In this material, we provide further elaboration on the
key aspects discussed in the paper. We provide additional
details on various aspects of our work. First, we elaborate
on the implementation details of CO-PAINTER and base-
lines (Sec.8). Second, we describe the construction pro-
cess of the quantitative evaluation metrics employed in this
study (Sec.9). Third, further information about the dataset
construction is provided (Sec.10). Fourth, we present more
visual examples to demonstrate the effectiveness of our
method (Sec.11). Fifth, we compare various feature in-
jection mechanisms and offer a deeper analysis of CO-
PAINTER’s performance (Sec.12). Sixth, in Sec.13, we
evaluated the impact of the quantity of attribute terms on
the model’s generalization. Seventh, we show the results
of combining CO-PAINTER with other controllable mod-
els (Sec.14). Eighth, we conducted a user study to quanti-
tatively assess user satisfaction with image stylization (see
15). Ninth, we analyze the societal impact of CO-PAINTER
and provide a detailed statement on its safety considerations
(Sec.16). Finally, we discuss the limitations of our work and
outline potential directions for future research (Sec.17).

8. Model Implementation Details
8.1. Preliminary
This paper employs the stable diffusion [6] as the basic im-
age generation model. It leverages a pre-trained perceptual
compression model, consisting of an encoder E and a de-
coder D, to map the complex sample features from pixel
space into a low-dimensional space focused on the essential
semantic components of the data. In this low-dimensional
space, the model simulates the diffusion process of the data,
gradually learning the original data distribution p(z) from
random Gaussian noise ϵ ∼ N (0,1). This entire process
can be modeled as learning the reverse process of a fixed
Markov chain of length T , where the noise at each step is

predicted by a denoising encoder ϵθ(zt, t), t = 1, . . . , T .
Here, zt represents the low-dimensional representation z0
of the input sample x0 after adding Gaussian noise at a spec-
ified proportion over different time steps t. Additionally, a
text encoder τΘ and a cross-attention mechanism are em-
ployed to incorporate the text y into the attention modules
of the UNet denoising model, enabling text-controlled im-
age generation:{
Attention(Q,K, V ) = softmax

(
QKT

√
d

)
· V,

Q = W
(i)
Q · φi (zt) ,K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y),

(1)
where, φi (·) represents the mapping of intermediate latent
features zt within the denoising model ϵθ. τθ(·) refers to
the text encoder. W (i)

Q , W (i)
K and W

(i)
V are learnable linear

layers. The entire model is optimized under the given in-
put condition c using the Mean Squared Error (MSE) loss
function.

LLDM = EE(x0),ϵ∼N (0,1),c,t ∥ϵ− ϵθ (zt, c, t)∥22 (2)

Fine-grained Controllable Image Stylization (FCIS)
aims to effectively decouple the rich attributes from ref-
erence images and then use these decoupled attributes as
guided conditions to generate the target image. FCIS dif-
fers from the original text-to-image diffusion model in the
following three aspects:

First, in the FCIS task, the model inputs are ex-
tended to include the text y and multiple reference im-
ages (i1, i2, . . . , iN ), where N represents the number of
image conditions. Second, these image conditions are fine-
grained and decoupled into multiple conditional embed-
dings (c1i , c

2
i , . . . , c

N
i ). Finally, these conditions are adap-

tively fused with the text condition cy , and through cross-
attention, they collectively influence the diffusion process
of the model.

8.2. Model Encoder Selection
Base Framework. We employed Stable Diffusion v1.5
[6] as the base model for CO-PAINTER. To retain the rich
knowledge from the pre-trained model, the UNet and text
encoder (the ViT-L/14 from CLIP [5]) were frozen. For the
image encoder, the pre-trained IP-Adapter [9] was used to
initialize the parameters of the image projection and the lin-
ear layers in the 16 cross-attention layers. Notably, the im-
age projection is untrainable. Additionally, the image en-
coder (the ViT-L/14 from CLIP [5]) was adopted to extract
the global information of multiple reference images.



Model Type Content image Training Inference Inference
(fine-tuning) Memory(MB) Time(s)

St
an

da
rd

InST [12] inversion based ✓ ✓ 11331 3.29
CAST [11] conventional based ✓ ✗ 10443 0.01
StyleTr2 [2] conventional based ✓ ✗ 3527 0.02
T2I-Adapter [3] diffusion based ✗ ✓ 12119 3.11
IP-Adapter [9] diffusion based ✗ ✓ 6279 1.74
DEADiff [4] diffusion based ✗ ✓ 11967 1.87
CO-PAINTER(Ours) diffusion based ✗ ✓ 6373 1.83

Fi
ne

-G
ra

in
ed

T2I-Adapter [3] controllable diffusion ✗ ✗ 10745 3.18
ControlNet [10] controllable diffusion ✗ ✗ 5701 2.22
IP-Adapter [9] stylized diffusion ✗ ✓ 6265 1.68
DEADiff [4] stylized diffusion ✗ ✓ 7895 1.83
T2I-Adapter(stacked) [3] stylized diffusion ✗ ✓ 13555 6.85
IP-Adapter(stacked) [9] stylized diffusion ✗ ✓ 6370 1.70
CO-PAINTER(Ours) stylized diffusion ✗ ✓ 6475 1.81

Table 1. Model implementation details and inference efficiency on 1 RTX 3090 GPU.

Proposed Modules. For the fine-grained decoupling
module, each module consists of a linear layer and a Lay-
erNorm layer. For the gated feature injection module, we
constructed a feed-forward network using two linear layers
and a GLUE [8] activation function. Furthermore, all gated
parameters were initialized to 0 to ensure the stable conver-
gence of the training process.

Benefits. Through these strategies, we can effectively pre-
serve the rich knowledge of the pre-trained Stable Diffusion
[6] and IP-Adapter [9] models, facilitating fast transfer and
seamless adaptation.

8.3. Computational Resource
During the training phase, we utilized 4 Nvidia RTX 30901

GPUs to train the model on the fine-grained style dataset
build in this paper. The training lasted for approximately
40 hours. The batch size was set to 4, and the total GPU
memory usage was around 56,800 MB. The entire training
framework was built upon and further updated from the IP-
Adapter2 [9].

8.4. Hyper-parameters
First, for the division between the coarse and fine layers,
we follow DEADiff [4] and number the 16 cross-attention
layers of Stable Diffusion [6] from 0 to 15. Among these,
layers 4-8 are designated as coarse layers, into which con-
tent information is injected. Correspondingly, the remain-
ing layers are defined as fine layers, receiving fine-grained
style information. Second, the context tokens for content,
brushstroke, and color embeddings are set to 4, and the la-
tent feature dimension of the feedforward layers is set to

1https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-
3090-3090ti/

2https://github.com/tencent-ailab/IP-Adapter

four times the input dimension. Lastly, for the inference
process, we introduce a negative prompt (text, watermark,
low-res, low quality, worst quality, deformed, glitch, low
contrast, noisy, saturation, blurry) to enable classifier-free
guidance in image generation. The guidance scale is set to
5.0, and the number of inference steps is 30.

8.5. Efficiency

For testing, we evaluated the inference memory and 30-
step inference time of baselines and CO-PAINTER on 1
RTX 3090 GPU. As shown in the Table 1, traditional im-
age stylization methods (CAST [11] and StyleTr2 [2]) have
shorter inference times and relatively lower memory con-
sumption. However, their performance in image stylization
is suboptimal. In contrast, diffusion-based methods (T2I-
Adapter-Style [3], IP-Adapter [9], T2I-Adapter(stacked)
[3], IP-Adapter(stacked) [9], DEADiff [4], and ControlNet
[10]) and inversion based method (InST [12]) demonstrate
stronger stylization capabilities, but due to iterative diffu-
sion process, they tend to have longer inference times. The
proposed CO-PAINTER is a fine-grained image stylization
approach based on diffusion models. Benefiting from its
lightweight image encoder, CO-PAINTER achieves supe-
rior results in inference memory and inference time com-
pared to others. Compared to IP-Adapter [9], our model
introduces only a minor increase in inference memory and
inference time. This slight increase is justified as it provides
optimal fine-grained control for image stylization tasks.

8.6. Baselines Implementation Details

In this section, we present the implementation details of the
comparative methods under both standard and fine-grained
settings (see Table 1).



Standard Image Stylization Settings. For InST [12], we
input each style reference image from the test set into the
fine-tuning framework to extract the inverted feature em-
beddings. These style feature embeddings are then fed into
the diffusion model, along with the text descriptions, to per-
form style transfer on the content images. For CAST [11]
and StyleTr2 [2], we loaded the pre-trained models pro-
vided by the authors for evaluation. For T2I-Adapter [3]
(Style) and IP-Adapter [9], we fine-tuned these two models
on the dataset proposed in this paper using a reconstruction-
based training strategy. For DEADiff [4], we fine-tuned this
model using a non-reconstruction-based training strategy.
Following the original settings, we injected the content ref-
erence image and style reference image into the coarse and
fine layers, respectively.

Fine-Grained Image Stylization Settings. For T2I-
Adapter [3], we used the composable adapters (Canny &
Color) to perform style attribute transfer on the brush-
stroke image and the color image, respectively. For Con-
trolNet [10], we achieved the same goal using the Color-
Canny-ControlNet model3 fine-tuned by Ghoskno et al. on
the laion-art-en-colorcanny4 dataset. Accordingly, we fine-
tuned all image stylization methods on the dataset built in
this paper. For IP-Adapter [9], a single image encoder pro-
cesses the three reference images to derive latent represen-
tations, which are then concatenated and fed into the diffu-
sion model through the decoupled cross-attention module,
as outlined in the original methodology, to guide feature
adaptation effectively. In contrast, IP-Adapter (stacked)
[9] employs three stacked image encoders, each process-
ing one reference image independently before concatenat-
ing the representations and injecting them into the diffusion
model via the same cross-attention mechanism. For T2I-
Adapter(stacked) [3], three stacked style encoders are em-
ployed to decouple multiple fine-grained image attributes
separately. These attributes ate then concatenated with the
text and fed into the diffusion model to guide image styliza-
tion. For DEADiff [4], we control the brushstroke and color
reference images through the style Q-former while directing
the content reference image into the content Q-former. The
extracted latent representations are subsequently disentan-
gled and infused into the diffusion model’s coarse and fine
layers as per the established method.

9. Evaluation Metrics
In this section, we provide a detailed introduction to the
evaluation metrics used in this paper. We employed three
metrics proposed by DEADiff [4] to assess the styliza-
tion results: Style Similarity (SS), Text Alignment (TA),

3https://huggingface.co/ghoskno/Color-Canny-Controlnet-model
4https://huggingface.co/datasets/ghoskno/laion-art-en-colorcanny

and Image Quality (IQ). In addition, we introduced three
new metrics based on cosine similarity, Content Alignment
(CONA), Brushstroke Similarity (BSTS), and Color Simi-
larity (COLS), to evaluate the fine-grained image stylization
performance of the model. The details of these metrics are
as follows:

9.1. Text Alignment
Text Alignment (TA) aims to assess the consistency be-
tween the generated image and the given text description.
We use the cosine similarity in the CLIP [5] (ViT-L/14) text-
image alignment space to evaluate the degree of alignment
between the text prompt and the stylized image.

9.2. Style Similarity
Style Similarity (SS) is designed to evaluate the visual style
similarity between the generated image and the reference
image. First, we use CLIP Interrogator 25 to generate the
best text prompt aligned with the reference image. Next,
we remove vocabulary related to the content of the refer-
ence image to obtain a style-specific prompt. Finally, we
use the cosine similarity from CLIP [5] (ViT-L/14) to as-
sess the style similarity between the stylized image and the
reference image. It is worth noting that for the fine-grained
image stylization experiments, our style prompt consists of
brushstroke and color descriptions: “a {color} image in
{brushstroke} style.”

9.3. Image Quality
Image Quality (IQ) aims to quantitatively assess the visual
quality of the images. We utilize the LAION-Aesthetics
Predictor V26 to evaluate the aesthetic quality of the images
generated by different methods.

9.4. Content Alignment
CONtent Alignment (CONA) aims to assess the consistency
between the generated image and the given content prompt.
First, we extract the content-descriptive terms from the in-
struction prompt, such as “dog,” “cat,” etc. Next, we con-
struct a content-specific prompt using a template: “an image
of {content}.” Finally, we evaluate the content alignment by
calculating the cosine similarity in the CLIP [5] (ViT-L/14)
alignment space.

9.5. Brushstroke Similarity
BrushSTroke Similarity (BSTS) aims to evaluate the sim-
ilarity in brushstroke details between the generated image
and the reference image. First, we extract brushstroke-
related descriptive terms from the reference image, such
as “Cartoon” or “Vincent Van Gogh.” Next, we con-
struct a brushstroke-specific prompt using the template: “a

5https://github.com/pharmapsychotic/clip-interrogator
6https://github.com/christophschuhmann/improved-aesthetic-predictor



{brushstroke} style image.” Finally, we assess the con-
sistency of brushstroke attributes by calculating the cosine
similarity in the CLIP [5] (ViT-L/14) alignment space.

9.6. Color Similarity
COLor Similarity (COLS) aims to evaluate the similarity
in color details between the generated image and the refer-
ence image. First, we extract color-related descriptive terms
from the reference image, such as “purple, pink, and gray”
or “white, blue, and green.” Next, we construct a color-
specific prompt using the template: “a {color} image.” Fi-
nally, we assess the consistency of color attributes by calcu-
lating the cosine similarity in the CLIP [5] (ViT-L/14) align-
ment space.

10. Details in Dataset
Overall. In this section, we provide detailed information
on the dataset created in this study. These details include
the lexical repository, GPT-Prompts, build costs and time,
dataset distribution, as well as data filtering and checking
processes. The details are as follows:

10.1. Lexical Repository Building
To construct the text prompts for the generative model, we
gathered 8 types of typical style terms, more than 20 color
combinations, and about 130 commonly used content terms.
Table 2 shows the entire lexical repository. These terms
are randomly selected during the data construction to gen-
erate detailed text prompts. This randomized combination
of terms ensures the diversity of data samples.

10.2. Text Caption Generation via ChatGPT
We used ChatGPT v4 [1] to combine different terms to gen-
erate detailed text captions. During this process, we ran-
domly selected 1 instruction from Table 3 to guide GPT [1],
enhancing data diversity and preventing the creation of sim-
ilar or repetitive image samples.

10.3. Image synthesis via Midjourney
After obtaining a detailed description of the image, we used
Midjourney v6.07 to perform high-quality image synthesis
(see Figure 1). First, the text captions generated by Chat-
GPT [1], combined with brushstroke terms, were input into
the Midjourney to synthesize 4 image samples. Next, the
samples that align with input instructions were upsampled.
Finally, following manual checking, a high-quality image
sample set with diverse brushstrokes was constructed.

10.4. Image synthesis via ControlNet
To construct samples with varying colors, we employed
ControlNet [10] for color transformation. First, different

7https://www.midjourney.com

color combinations, image brushstroke terms, and the im-
age caption were combined to form new prompt instructions
(e.g., “a {colors} image in {brushstroke} style, {Caption},
high-quality, extremely detailed, 4K”). Second, the canny
edge map of the original image was used as an additional
prompt to retain the structural information. Finally, im-
age samples with district color levels and Various brush-
strokes were obtained. Sample examples from the dataset
are shown in Figure 2.

10.5. Data Filtering & Checking
In the data construction process, we combined CLIP [5]
with manual supervision to filter and check the Synthesized
images, ensuring data accuracy and diversity. On the one
hand, the 6 evaluation metrics established in Sec.9 are used
to assess various aspects of the generated paired sample
data, which ultimately led to the filtering of approximately
20% of anomalous data. On the other hand, we conducted
manual supervision and checks at each stage. This process
primarily involved data summarization, correction of tex-
tual errors, and removal of anomalous data.

10.6. Build Cost and Time
We listed the cost and time required to construct the dataset
(see Table 4). A data processing team of 5 members was
assembled to organize and review all procedures. Most
steps were automated, and each team member contributed
approximately 30 hours, processing over 50,000 data pairs.
The entire dataset creation process took a total execution
time of around 104 hours.

10.7. Data Distribution
To demonstrate the diversity and correlation structure
within our dataset, PCA dimensional reduction was em-
ployed to conduct a statistical analysis of the data distri-
bution. Figures 3a and 3b illustrate the distribution differ-
ences across varied brushstrokes and colors, respectively.
These findings indicate that our constructed dataset encom-
passes a rich variety of samples and displays a significant
correlation between brushstroke and color dimensions. This
structure provides a solid foundation for subsequent model
training and style transfer tasks, ensuring that these com-
plex structural features are fully accounted for during im-
age stylization. Furthermore, the distributional variations
within the dataset offer a richer style space, thereby enhanc-
ing the model’s capacity for fine-grained control in image
generation.

11. Visualization
To demonstrate the effectiveness of CO-PAINTER, we
present more visual results in standard and fine-grained im-
age stylization settings (see Table 5 Figure 4, Figure 5, Fig-
ure 6, and Figure 7).

https://www.midjourney.com


Brushstrokes #8
cartoon children illustration ink wash painting miyazaki hayao oil painting
photo pixel vincent van gogh
Colors #23
black, white blue blue, white, orange brown gray, orange, green
green orange pink pink, blue, green pink, blue, yellow
pink, white, green purple purple, cyan, yellow purple, pink, gray red
red, green, blue red, pink, green red, yellow, blue red, yellow, green white
white, blue, green yellow yellow, green, blue
Contents #133
airplane ant apple backpack baseball
basketball beach bear bee bench
bicycle bird boat bookshelf bottle
boy bridge building bus butterfly
camera canoe car cat cave
chair chicken child classroom cliff
clouds computer coral reef cow crab
cucumber cup deer desert dog
dragon duck elephant farm fence
fish fisherman fishing boat flower flowers
forest fox frog fruits garden
giraffe girl glacier grass hedgehog
helicopter hill horse house island
kangaroo kayak lake lamp lantern
leaf library lion lychee man
mango monkey moon moon and stars motorcycle
mountain oasis ocean office old man
palace panda panda panda pig
plate playground potato rabbit rain
river road sailboat seashell sheep
shell shrimp snake snow soccerball
sofa spider squirrel star starfish
stars street sun table telescope
tennis tent tiger tomato train
tree truck turtle umbrella umbrella
vegetable villa waterfall wave window
woman yacht zebra

Table 2. Lexical repository. It includes 8 typical style terms, 23 color combinations, and 133 commonly used content terms.

conducted 2 aspects of evaluation: 1) We present 2
groups of results where the same prompt is used for all 9
generated images((a) and (b) in the above Figure 8). Com-
paring (a) and (b) shows the model’s performance under dif-
ferent prompts with consistent brushstroke and color. It can
be observed that CO-PAINTER effectively captures varia-
tions in conditions. 2) To evaluate the controllability of each
branch/attribute (i.e., color or brushstroke) that operates in-
dependently, we use images only to guide 1 condition while
varying the other based on prompts((c), (d) in above Fig-
ure 8). And, the result generated solely by text prompts
was present ((e) in above Figure 8). Both of the above

results validate the sufficient disentanglement of multiple
attributes.

12. Comparison of Different Feature Injection
Mechanisms

In this section, we compared the impact of different feature
injection mechanisms on image stylization. Specifically,
DCM refers to the disentangled conditioning mechanism
proposed in DEADiff [4], DCA refers to the decoupled
cross-attention feature injection mechanism introduced in
IP-Adapter, and GFI represents the gated feature injection



GPT Prompts #10
1. The content and brushstroke of the image are: {content}, {brushstroke}, generate a detailed text prompt.
2. Based on the image’s content {content} and its brushstroke {brushstroke}, create a detailed prompt.
3. Describe the image by emphasizing the target content {content} and distinctive brushstroke style {brushstroke}.
4. Construct a detailed image prompt that highlights both the content {content} and the {brushstroke} brushstroke.
5. Using the target {content} and brushstroke {brushstroke}, write a descriptive prompt for the image.
6. Generate a prompt focusing on the {content} and stylistic {brushstroke} elements in the image.
7. Create a descriptive prompt that captures the specific {content} and {brushstroke} brushstroke of the image.
8. Write a text prompt emphasizing the image’s target {content} along with its unique {brushstroke} style.
9. Generate a prompt that elaborates on both the desired {content} and artistic {brushstroke} features of the image.
10. Write a detailed prompt centered around the {content} and its {brushstroke} brushstroke.

Table 3. GPT prompt templates. We randomly select 1 template to prompt GPT to generate detailed image captions.

Cartoon
A  cartoon horse with a 

black mane and big eyes, 

cartoon style.

A cartoon dog with a red 

collar sitting down , 

cartoon style.

A girl with glasses and a 

blue shirt, cartoon style.

A painting of a boat in 

the middle of the ocean, 

children illustration style.

A painting of a yellow 

bus in a field of flowers, 

children illustration style.

A helicopter flying over a 

l u s h  g r e e n  h i l l s i d e , 

children illustration style.

A  black and white 

drawing of a dog ,  i n k 

wash painting style.

A  b l a c k  a n d  w h i t e 

painting of a mountain 

stream, ink wash painting 

style.

A  painting of a small 

island with palm trees , 

ink wash painting style.

An old man wearing a hat 

a n d  a  g r e e n  s h i r t , 

miyazaki hayao style.

A young man standing in 

front of a bush, miyazaki 

hayao style.

A  d o g  s i t t i n g  o n  t h e 

ground  wi th  a  smi l e , 

miyazaki hayao style.

A painting of a table with 

fruit and a wine glass, oil 

painting style.

A  painting of a squirrel 

sitting on a tree branch , 

oil painting style.

A  painting of people 

walking down a street, oil 

painting style.

A  beach with waves 

coming in to the shore , 

photo style.

A large elephant walking 

across a dry grass field , 

photo style.

A colorful slide in a park 

next to a tree, photo style.

A  brown and white dog 

standing on a blue 

background, pixel style.

A green leaf with yellow 

spots on it, pixel style.

A  small bird sitting on a 

branch of a tree ,  p i x e l 

style.

A painting of two trees on 

a hill, vincent van gogh 

style.

A painting of a man with 

a beard, vincent van gogh 

style.

A painting of a boat on a 

lake at night, vincent van 

gogh style.

Children 
Illustration

Ink Wash 
Painting

Miyazaki 
Haya Style

Oil Painting

Photo

Pixel

Vincent 
Van Gogh

Figure 1. Image Examples with various brushstrokes.



Cartoon
A boy with big eyes and a 

green shirt.

A little girl holding an 

umbrella in the flowering 

shrubs.

A pa in t ing  of  a  lush , 

twisty tree.

A  b o y  w i t h  g l a s s e s 

pushed the bicycle.

A painting of a lamp on a 

table.

A brown backpack is on 

the ground.

A pixel style picture of a 

lion standing on the 

ground.

A  p a i n t i n g  o f  a  p a r k 

bench under a tree.

Children 

Illustration

Ink Wash 

Painting

Miyazaki 

Haya Style

Oil Painting

Photo

Pixel

Vincent 

Van Gogh

Pink 

Blue Yellow

Red 

Yellow Blue

Gray 

Orange Green
Original

Purple

Pink Gray
White BrownOrangeBlueCaptions

Figure 2. Some image examples with various brushstrokes and colors.

Lexical Repository Text Caption Brushstroke Image Color Image Filtering & Checking
Total Time ≈ 8h ≈ 6h ≈ 24h ≈ 36h(8 GPUs) ≈ 30h

Response Time / 10s/iteration 30s/iteration 20s/iteration /
Resource ChatGPT[1] & Labor ChatGPT[1] Midjourney ControlNet[10] CLIP[5] & Labor

Table 4. Dataset building cost and time.” The ”Total time” represents the overall time cost for each stage, while ”Response time” indicates
the average response time across different models. ”Resource” refers to the resources required for each stage. The total time spent on
building the dataset is approximately 104 hours.

Methods IQ↑ SS↑ TA↑ LPIPS↓ Chamfer
StyleDrop 5.86 27.4 23.3 0.797 0.074
StyleStudio 5.84 26.2 24.2 0.786 0.068
StyleAlign 6.06 27.5 23.7 0.785 0.074
CSGO 5.95 27.3 24.3 0.789 0.073
InstantStyle 5.96 31.4 20.4 0.806 0.078
Rb-modulation 6.05 27.5 23.9 0.788 0.069
CO-PAINTER(Ours) 6.14 27.8 24.5 0.785 0.065

Table 5. he quantitative evaluation of more baselines.

mechanism proposed in this work. To ensure a fair com-
parison, we injected the image embeddings extracted by the

Method IQ↑ SS↑ TA↑
Baseline 6.07 36.9 14.3
+DCA 5.93 32.5 23.0
+DCM 5.94 31.9 23.2
+GFI 5.96 31.6 23.3

+FGD & GFI 6.14 27.8 24.5

Table 6. The quantitative evaluation of different feature injection
mechanisms.

image encoder into the fine layers of the diffusion model
using these three feature injection mechanisms, rather than
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(a) Violin plot of data distribution of various brushstrokes.
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(b) Violin plot of data distribution of various colors.

Figure 3. We use PCA dimensional reduction to measure the feature distribution of different datasets, where there are significant differences
in the feature distribution.

Method IQ↑ SS↑ TA↑ CONS↑ BSTS↑ COLS↑
3-BST&133CON 5.94 19.8 20.1 25.4 20.5 17.3
5-BST&133CON 6.01 20.6 20.2 25.4 21.3 17.6
8-BST&80-CON 6.01 20.6 20.2 25.5 21.6 17.5
8-BST&100-CON 6.04 20.2 20.3 25.3 20.8 17.6
8-BST&133CON 6.06 20.9 20.4 25.6 21.4 17.9

Table 7. Quantities evaluation of the effect of different numbers of brushstrokes (BST) and contents (CON) on model generalization.

injecting them into all layers. The selection strategy for the
fine layers is identical to that used in DCM.

The experimental results reveal several interesting con-
clusions (refer to columns 3, 4, 5, and 6 of Figure 9 and
rows 1, 2, 3, and 4 of Table 6). First, injecting the refer-
ence image features only into the fine layers can reduce the
model’s preference toward the reference images to some ex-
tent, thereby mitigating the issue of content leakage. All

three feature injection strategies demonstrate varying de-
grees of performance improvement compared to the Base-
line. Second, the DCA injection strategy, which simply
adds text and image features, somewhat undermines the
guiding capability of the text, leading to content informa-
tion leakage from the reference images. Third, DCM en-
hances the importance of text prompts by adopting a feature
concatenation strategy. However, the content attribute from
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Figure 4. Qualitative evaluation results compared with more baselines in fine-grained image stylization settings.

the reference image still conflicts with the text. Finally,
GFI utilizes a gated mechanism to adaptively integrate text
and image features, effectively addressing the issue of im-
age content leakage. Additionally, its flexible feature in-
jection strategy effectively adapted to the differences across
various cross-attention layers, resulting in improvements in
both image quality and text alignment. However, since the
reference image attributes are not finely decoupled, its per-
formance remains limited.

From Figure 9 (col 5) and Table 6 (row 3), we can
observe that fine decoupling of reference image attributes
significantly enhances image stylization performance. The
FGD module provides the GFI with a clearer decoupled rep-
resentation of image attributes, which effectively guides the
GFI module to capture detailed information about different
conditions and their collaborative relationships.

13. Impact of Attribute Term Quantity on
Model Generalization

To assess the impact of attribute term quantities (brush-
stroke (BST) and content (CON)) on model generaliza-
tion, we pre-trained CO-PAINTER on various training sub-
sets and conducted few-shot fine-tuning and evaluation with
OTD data. The results in Table 7 indicate that an increased
quantity of both brushstrokes and content is beneficial for
the model’s generalization performance on OTD data.

14. Combine with Other Controllable Models

In this subsection, we present the combination results of
CO-PAINTER with ControlNet [10] and Dreambooth [7]
(see Figures 10, 11, and 12). It is observed that CO-
PAINTER seamlessly integrates with other conditional dif-
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Figure 5. More qualitative evaluation results in standard image stylization setting.

fusion models, achieving outstanding visual effects. For
the combination with ControlNet [10], we can see that
our model enables fine-grained control over the diffusion
process regarding abstract style attributes, while Control-
Net [10] provides precise structural and layout informa-
tion. In the case of the integration with Dreambooth [7],
the proposed model demonstrates its ability to perform fine-
grained style transformations on customized appearance
representations. This validates the strong adaptability of
CO-PAINTER in image generation. The model not only

maintains high-quality visual output but also flexibly sup-
ports personalized needs, advancing the progress of artistic
creation.

15. User Study
To evaluate the subjective stylization effects of different
methods and understand user satisfaction, we conducted
a user study under both standard and fine-grained image
stylization settings. First, we randomly selected 40 sam-
ple groups from the test set and applied various algorithms
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Figure 7. Visual comparative results for fine-grained image styl-
ization.

Method IQ↑ SS↑ TA↑ Overall↑
InST[12] 73.8 55.3 82.6 72.7
CAST[11] 70.3 71.4 90.3 81.8
StyTR-2[2] 72.2 69.5 88.9 83.3
T2I-Adapter[3] 83.2 92.6 40.3 56.8
IP-Adapter[9] 83.4 93.7 37.6 57.7
DEADiff[4] 85.2 75.2 88.7 83.0
CO-PAINTER(Ours) 89.3 90.3 88.4 87.9

Table 8. The user study results of the standard image stylization.

for image stylization. Next, the generated results were ran-
domly shuffled, and two sets of evaluation forms were cre-
ated. Finally, we recruited 18 volunteers with diverse back-
grounds to rate the stylization outcomes. It is important
to note that a percentage-based scoring system was used to
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evaluate the stylization results. Volunteers provided subjec-
tive scores based on several aspects, such as style similarity,
text alignment, image quality, and overall evaluation.

Table 8 presents the results of the user study conducted
under the standard image stylization setting. From the table,
we can observe that the proposed CO-PAINTER achieved
the highest overall user satisfaction (87.9) in terms of vi-
sual results. It also obtained competitive quantitative scores
in style similarity, text alignment, and image quality. This
indicates that, despite being a fine-grained controllable im-
age stylization model, CO-PAINTER still delivered the best
performance under the standard setting. In contrast, other
methods exhibited a noticeable decline in user satisfaction
to varying degrees.

Table 9 presents the evaluation results under the fine-
grained image stylization setting. It can be observed that
our model achieved leading performance across all metrics,
with an overall user satisfaction score of 89.2. In contrast,
other methods showed a significant decline in performance
across multiple aspects, due to issues such as severe content
leakage, brushstroke leakage, or color leakage.

Overall, these results indicate that our method provides
superior image stylization performance from the users’ per-

spective. It achieved satisfactory results in both standard
and fine-grained image stylization tasks.

16. Social Compact
Positive Societal Impact. CO-PAINTER introduces in-
novative opportunities to the fields of art creation and de-
sign, enabling artists, designers, and creative professionals
to efficiently and accurately generate stylized images, sig-
nificantly enhancing productivity. Whether for beginners
or experienced professionals, CO-PAINTER allows users
to overcome the limitations of traditional creation methods,
sparking greater creative expression. Additionally, CO-
PAINTER’s seamless integration with other controllable im-
age generation methods fosters cross-platform collabora-
tion, driving the development of more sophisticated and ver-
satile tools and pushing the deeper integration of art and
technology.

Potential Negative Social Impacts. While CO-
PAINTER has the potential to advance artistic creation, it
may also introduce some negative consequences. First,
with the widespread adoption of stylized image generation



Method IQ↑ SS↑ TA↑ CONS↑ BSTS↑ COLS↑ Overall↑
ControlNet[10] 73.4 66.3 32.6 29.8 82.1 55.6 61.2
T2I-Adapter[3] 77.2 62.9 80.5 83.1 58.3 60.1 67.3
IP-Adapter[9] 83.6 81.0 53.9 52.6 81.3 62.5 70.1
DEADiff[4] 82.6 80.3 85.2 91.7 75.3 72.8 84.0
T2I-Adapter(stacked)[3] 80.5 86.7 83.4 90.5 79.6 85.2 83.6
IP-Adapter(stacked)[9] 82.9 88.9 60.3 55.2 88.1 87.7 72.6
CO-PAINTER(Ours) 89.4 90.5 87.6 93.5 88.4 89.1 89.2

Table 9. User study results of fine-grained image stylization.
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Figure 10. Visualization results of the combination with Control-
Net under the standard image stylization setting. CO-PAINTER

technologies, some artists and designers may come to rely
on such tools, potentially diminishing their creative abilities
and the uniqueness of their artistic expression. Second,
CO-PAINTER could be misused to generate content that
infringes on copyrights or parodies others’ works, leading
to copyright disputes or misleading audiences. Lastly,
the trend toward depersonalization and automation in
artistic creation may devalue traditional art forms and
handcrafted works, thereby altering the art market and
cultural landscape.

Mitigation of Negative Impacts (Security Statement).
To minimize potential negative impacts, we will strictly ad-
here to ethical and legal standards, ensuring that users em-
ploy CO-PAINTER solely for lawful and legitimate creative
activities. Unless authorized, CO-PAINTER will only be
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Figure 11. Visualization results of the combination with Control-
Net under the fine-grained image stylization setting.
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Figure 12. Visualization results of the combination with Dream-
booth.

permitted for use in research domains. Furthermore, access
to the proposed dataset will be strictly limited to qualified
institutions and organizations, which must provide a clear
purpose for its use. We explicitly prohibit the use of the
dataset in situations that could lead to potential risks or gen-



erate significant societal consequences.

17. Limitations and Future Work
17.1. Limitations
This paper provides a detailed analysis of fine-grained con-
trollable image stylization tasks and proposes a superior
model, CO-PAINTER. However, the model does not de-
couple more style attributes from the reference image, such
as lighting, and texture. Exploring the effective transfer of
a broader range of style attributes is a crucial aspect of fine-
grained image stylization tasks. Additionally, as the number
of control conditions increases, the model may encounter
challenges in handling the more complex problem of multi-
style attribute transfer. Ultimately, although our dataset in-
cludes a variety of brushstrokes and colors, it is still chal-
lenging for the model to fully adapt to the countless styles
present in real-world scenarios. This represents a drawback
of our study. To address this limitation, we propose the cre-
ation of a larger and more diverse fine-grained style dataset.

17.2. Future Work
Considering these limitations, future work could focus on
the following studies: First, we can further optimize the
model to achieve decoupling and transfer of a broader range
of style attributes, while also enhancing its generalization
capability and robustness across diverse application scenar-
ios. Second, exploring the integration of multi-modal learn-
ing methods could allow for a closer alignment between text
prompt and image style attributes, enabling more flexible
and precise style control. Finally, constructing a larger and
more diverse fine-grained style dataset would enhance the
generalization ability of image stylization models and en-
able zero-shot transfer of fine-grained style attributes.

With these improvements, the model is expected to
demonstrate greater adaptability in complex scenarios and
meet a wider range of application needs.
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