
FontAnimate: High Quality Few-shot Font Generation via
Animating Font Transfer Process

Supplementary Material

1. Implement Details

In this section, we provide more implementation details
about our proposed FontAnimate.

To prepare training and reference font videos, we use the
FILM model to perform frame interpolation from the source
font image (the first frame) to the target font image (the last
frame). We modify the FILM model into a multiprocessing
version and utilize two CPUs (Intel 6242R @ 3.10GHz) to
generate the above font videos, which takes five days.

We adopt our FontAnimate on the public-available La-
tent Diffusion Model (LDM) [4] platform to generate 128×
128 font images/videos with eight reference samples (8-
shot), and utilize its VAE [5] as the image/video-latent pro-
jection network in our model.

1.1. Image-to-Image Font Generation Framework:

As discussed in the previous section, in this paper, we first
construct our image-to-image font generation framework.

Following the common practice [2, 3] in the FFG task,
we construct the style encoder Es and content encoder Ec

to extract the style and content conditions from the refer-
ence samples Is and source images Ic, respectively. The
architecture of style and content encoders is modified from
MSD-Font by changing the output channels of the last
block. We implement and modify a transformer-based neu-
ral network, namely PixArt-α [1], as our denoising network
ẑimg
θimg (z

img
t , t, eimg). PixArt-α is a transformer-based dif-

fusion model for conditional generation, and we use this
model with the following modifications: (1). The depth is
12; (2). The hidden size is 384; (3). The patch size is 1.

In the training stage, we obtain the ground truth latent
features zimg

0 ∈ Rb×4×16×16 by using the VAE encoder E
to project the target images Ig ∈ Rb×3×128×128 into the
latent space, where b represents the batch axis. In the infer-
ence stage, the denoising network ẑimg

θimg (z
img
t , t, eimg) will

generate zimg
0 ∈ Rb×4×16×16 by gradually denoising zimg

t ,
and the generated font images ximg

0 can be obtained by us-
ing the VAE decoder D by project latent features zimg

0 back
to image space. We utilize content encoder Ec to extract
the content features eimg

c ∈ Rb×384×16×16 from the source
images. We utilize style encoder Es to extract the averaged
style features eimg

s ∈ Rb×384×16×16 from the provided ref-
erence images (3 images for training and 8 images for in-
ference). Finally, the content and style features are flattened
and concatenated to build the condition eimg ∈ Rb×384×512.

1.2. Image-to-Video Font Generation Framework:
We further construct our font video denoising network
ẑvidθvid(z

vid
t , t, fi, evid) by adding the proposed temporal part

and frame-index information. For the noisy latent video
representation zvidt ∈ Rb×c×f×h×w, where b and f repre-
sent the batch axis and the temporal axis. When the internal
feature maps go through the image part, the temporal axis
f is ignored by being reshaped into the batch axis b, allow-
ing the network to process each frame independently. We
then reshape the feature map back to the 5D tensor after the
image part. On the other hand, our newly inserted temporal
part ignores the spatial axis by reshaping h, w into batch
axis b and then reshaping back after the calculation.

In the training stage, we use 8-frame font videos to op-
timize our model. We first sample 8 frames from each
training video, and extract the same frames from the ref-
erence videos Vs. We obtain the ground truth latent fea-
ture zvid0 ∈ Rb×4×8×16×16 by using the VAE encoder E
to project the target font videos Vg ∈ Rb×3×8×128×128

into the latent space in the frame-by-frame manner. In the
inference stage, we generate font videos with 33 frames.
The denoising network ẑvidθvid(z

vid
t , t, fi, evid) will generate

zvid0 ∈ Rb×4×33×16×16 by gradually denoising zvidt , and
the generated font video xvid

0 can be obtained by using the
VAE decoder D by project latent feature zvid0 back to RGB
space in the frame-by-frame manner.

To generate font videos, we still use the source images
to construct content conditions by utilizing content encoder
Ec to extract the content features. Then the content fea-
tures are broadcast to the shape evidc ∈ Rb×384×f×16×16,
where f = 8 for training and f = 33 for inference. How-
ever, we use the reference font videos to provide style con-
ditions. We employ style encoder Es to extract the aver-
aged style features evids ∈ Rb×384×f×16×16 from the pro-
vided reference videos. Finally, the content and style fea-
tures are flattened and concatenated to build the condition
evid ∈ Rb×384×f×512.

1.3. Optimization Details
We utilize a two-stage training strategy to optimize our
FontAnimate. In the first stage, we train our style encoder
Es, content encoder Ec, and denoising network ẑimg

θimg with
AdamW optimizer while keeping VAE encoder E and de-
coder D fixed. We use a single RTX 3090 GPU to optimize
our model with the learning rate 5×10−5 and batch size 64
for this stage. In the second stage, construct the font video
denoising network ẑvidθvid , and optimize our framework (in-



MX-Font

NTF

MSD-Font

VQFont

FontAnimate

CF-Font

FontDiffuser

Ground Truth

Content

Figure 1. Qualitative comparisons of our FontAnimate with other six state-of-the-art methods in the Unseen Fonts and Unseen Contents
(UFUC) setting.

Table 1. Ablation study for the training strategy of our FontAn-
imate on UFUC dataset in the second training stage. The bold
number indicates the best.

Imag. Temp. + FI RMSE↓ PSNR↑ SSIM↑ LPIPS↓
- ✓ 0.2516 12.25 0.7168 0.1372
✓ ✓ 0.2483 12.43 0.7209 0.1340

cluding Es, Ec, ẑvidθvid ) with font videos. We use 4 RTX
3090 GPUs to optimize our model with the learning rate
2.5 × 10−5 and batch size 32 for this stage. In the training
stage, the reference samples are randomly selected from the
training set at each iteration step.

2. Additional Ablation Study

2.1. Ablation Study on Training Strategy

Our FontAnimate is built on the I2I-based font generation
network by incorporating the temporal (Temp.) part and the
frame-index (FI) information. Since the image (Imag.) part
has already been optimized in the first stage, we perform
an ablation study to evaluate whether further optimization
is necessary in the second stage. As shown in Tab. 1, com-
pared to freezing the image part in the second stage, con-
tinuing to train this part leads to significant improvements,
demonstrating that optimizing the image part is still neces-
sary for effectively learning font transformation patterns.

Table 2. Ablation study on the number of interpolation frames.

Nf RMSE↓ PSNR↑ SSIM↑ LPIPS↓
I2I 0.2575 12.08 0.7105 0.1448
2 0.2607 11.97 0.7058 0.1455

22 + 1 0.2592 12.03 0.7065 0.1464
23 + 1 0.2560 12.09 0.7198 0.1442
24 + 1 0.2538 12.24 0.7144 0.1393
25 + 1 0.2483 12.43 0.7209 0.1340

2.2. Ablation Study on the Interpolation of Different
Number Frames

We interpolate the font images with different Nf for train-
ing, and the results (in UFUC testing set) are present in Tab.
2. The performance of Nf = 2, 5 is lower than I2I model,
since small Nf cannot well describe the font transfer pro-
cess. When Nf become large, the performance increases,
verifying that the performance indeed comes from the in-
terpolation of frames. The inference time increases when
the Nf increase. We think that performance will continue
to improve when Nf > 33.

2.3. Ablation Study of the Number of Frames in
Inference.

In this paper, we use the font video of 33 frames to train
our model. We test different number of frames Ninf in in-
ference. The results (in Tab. 3) show that performance will
decrease when Ninf not aligned with training samples.



Table 3. Ablation study on the number of frames in inference.

Ninf RMSE↓ PSNR↑ SSIM↑ LPIPS↓
2 0.3006 10.69 0.6470 0.2061
5 0.2780 11.41 0.6815 0.1686
9 0.2574 12.10 0.7102 0.1422
17 0.2519 12.30 0.7175 0.1356
33 0.2483 12.43 0.7209 0.1340

2.4. Ablation Study on the effects of VAE

In LDM framework, VAE indeed damages the image qual-
ity. We investigate this problem by using VAE encoder to
project image into latent space and then reconstructing im-
ages via VAE decoder in UFUC testing set. The RMSE,
PSNR, SSIM, LPIPS are: 0.017, 36.60, 0.9962, 0.002, ver-
ifying the loss of VAE can be ignored in our current model.

2.5. Visualization of Training Samples

We provide the training samples of our model in the Fig. 2.

Figure 2. Visualization of training samples.

2.6. Discussion on the Inference Time and Compu-
tational Efficiency

Since we construct our font generation platform based on
diffusion-based video generation models and use the noise
inversion (NI) mechanism to perform condition alignment,
the inference time and computational resources are in-
creased compared to previous GAN-based FFG methods.
However, we believe it is worth spending more time to gen-
erate font images, due to the following reasons: (1). Al-
though I2V model and NI mechanism bring more inference
time, our model achieves all best performance in UFUC
setting, and have superior visual quality than other model.
Due to this improvement. (2). NI is a test-time noise inver-
sion mechanism, which can be viewed as a test-time scaling
(TTS) strategy. We provide a pioneering attempt to apply
TTS in FFG task. (3). In the generated videos, some in-
termediate frames can be regarded as new fonts, providing
more creative potential for users. (4). Finally, considering
performance improvement, new perspective, and new tech-
nique, we think our work will offer a new direction for FFG.

3. Additional Qualitative Results
In this section, we present additional qualitative results of
our proposed FontAnimate framework. Specifically, Fig. 1
illustrates a qualitative comparison between FontAnimate
and six state-of-the-art methods in UFUC setting. Our ap-
proach effectively preserves overall structural completeness
when generating font images, even for complex characters.
Moreover, we present further visualization results of the
generated font videos (Fig.3) and font images (Fig.4) pro-
duced by our proposed FontAnimate framework.



Figure 3. Generated font videos from our FontAnimate in the Unseen Fonts and Unseen Contents (UFUC) setting.



Figure 4. Additional qualitative results of our FontAnimate on UFUC dataset.



References
[1] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze

Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo,
Huchuan Lu, et al. Pixart-α: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. arXiv
preprint arXiv:2310.00426, 2023. 1

[2] Bin Fu, Fanghua Yu, Anran Liu, Zixuan Wang, Jie Wen, Jun-
jun He, and Yu Qiao. Generate like experts: Multi-stage font
generation by incorporating font transfer process into diffu-
sion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6892–6901,
2024. 1

[3] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and
Hyunjung Shim. Multiple heads are better than one: Few-shot
font generation with multiple localized experts. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 13900–13909, 2021. 1

[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pages 10684–10695, 2022. 1

[5] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 1


	Implement Details
	Image-to-Image Font Generation Framework:
	Image-to-Video Font Generation Framework:
	Optimization Details

	Additional Ablation Study
	Ablation Study on Training Strategy
	Ablation Study on the Interpolation of Different Number Frames
	Ablation Study of the Number of Frames in Inference.
	Ablation Study on the effects of VAE
	Visualization of Training Samples
	Discussion on the Inference Time and Computational Efficiency

	Additional Qualitative Results

