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Supplementary Material

7. Detailed Experiment Setup
7.1. Method Setup
7.1.1. Baseline Setup
For the baselines StreamingLLM [31] and FastV [3], we
follow the official implementations and set the attention
sink size of StreamingLLM to 8 and K in FastV to 2.

7.1.2. FrameFusion Setup
Workflow details. For FrameFusion, token merging is only
applied to visual tokens because they dominate input length
and show higher similarity between adjacent frames, en-
abling O(N) complexity merging. The detailed workflow
of FrameFusion is shown in Figure 10.
Hyperparameters. The merging ratios across layers are
controlled by two hyperparameters: Sthreshold and Nthreshold,
as discussed in Section 4.1.

Sthreshold defines the minimum cosine similarity required
for two tokens to be considered similar and merged. Since
similarity distributions vary across models, we set Sthreshold
to match the median of similarity at the first model layer
under typical input cases, such as 128 samples from the
VideoMME dataset. For the Llava-Video series, we set
Sthreshold = 0.6; for MiniCPM-V, we set Sthreshold = 0.7;
for NVILA-2B,8B,15B, We set Sthreshold = 0.6, 0.75, 0.8,
respectively.

Nthreshold determines the transition from merging to prun-
ing. If the number of similar tokens (tokens with cosine
similarity above Sthreshold) falls below Nthreshold, the model
switches to pruning. We set Nthreshold = 0.1 to avoid exten-
sive similarity computations across the entire model.

To ensure the merging process does not excessively re-
duce the token count below the predefined token budget C,
we precompute the maximum number of token pairs (Nmax)
that can be merged per layer. If the actual number of pairs
exceeds Nmax, only the top Nmax pairs with the highest co-
sine similarity are merged. Any remaining merging or prun-
ing steps are skipped, and the model proceeds with a stan-
dard forward pass.

7.2. Model Setup
We follow the default frame count settings for all models,
except for NVILA-Lite-2B. Since NVILA-Lite-2B is not
specifically trained for video tasks, we set its frame count to
64. For the Llava-Video series and Minicpm-V, the frame
count is set to 64, while for NVILA-Video-8B and NVILA-
Video-15B, it is set to 256.

8. Additional Experiment Results
8.1. Performance
8.1.1. Computation-Accuracy Trade-off
We further investigate the trade-off between computational
cost and accuracy. We evaluate the Llava-Video-7B and
NVILA-8B models on the VideoMME and VideoNIAH
benchmark, respectively. The results are shown in Figure
11 and Figure 12. As the number of FLOPs decreases, other
baseline methods exhibit a noticeable decline in accuracy,
whereas FrameFusion maintains superior performance.

8.1.2. Performance Across Different Input Length
Figure 13 presents the performance of Llava-Video-7B on
the VideoMME benchmark as the number of input frames
varies from 8 to 128. Across all configurations, FrameFu-
sion consistently outperforms the baseline methods, demon-
strating its robustness to different input length.

8.1.3. Performance Across Different Token Budgets
Table 6 presents the benchmark performance of the Llava-
Video-7B model at token budgets ranging from 0.3 to 0.7.
At a 30% token budget, FrameFusion achieves strong per-
formance, with a maximum relative drop of less than 3.0%
compared to the dense model. As the budget increases to 0.5
and 0.7, the maximum drops further decrease to →1.2%.

8.1.4. Performance Across Different Models
We present the detailed numeric results of the scalability
experiments in Section 5.3.

As shown in Figure 14, FrameFusion consistently
outperforms FastV baseline across all model sizes and
VideoMME categories, demonstrating comparative perfor-
mance with the original model at a 30% relative token bud-
get. Note that the model Llava-Video-32B has been re-
moved by its author team. However, in order to demonstrate
the generalization capability of our FrameFusion method
across variable model sizes, we still include this model in
the performance and efficiency tests here.

Table 7 provides the VideoMME scores for various
model sizes across different video lengths and categories,
offering a numerical breakdown of Figure 14.

Table 8 illustrates how retrieval accuracy scales with
the number of input frames, complementing the insights
from Figure 8. As shown, FrameFusion maintains consis-
tent accuracy improvements across increasing frame num-
bers, matching the performance of the original model. In
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Figure 10. The workflow of FrameFusion when applied to LVLMs. At each layer, FrameFusion performs merging, pruning, or no action
between the self-attention and feed-forward layers, depending on the current stage. The stage initially starts as “merge” and updates
according to transition conditions.

VideoMME NExt-QA-MC NExt-QA-OE
Model Method Budget Score ↑ Drop ↓ Score ↑ Drop ↓ Score ↑ Drop ↓ Max. Drop ↓

Llava-Video-7B

Original 1.0 63.2 - 83.2 - 32.1 - -

Ours
0.3 61.3 3.0% 81.8 1.7% 31.7 1.2% 3.0%
0.5 62.6 0.9% 82.7 0.6% 32.1 0.0% 0.9%
0.7 63.0 0.3% 82.8 0.5% 32.1 0.0% 0.5%

MiniCPM-V-8B

Original 1.0 58.5 - 78.9 - 13.8 - -

Ours
0.3 57.4 1.9% 78.2 0.9% 16.3 -18.1% 1.9%
0.5 58.5 0.0% 78.6 0.4% 17.4 -26.1% 0.4%
0.7 57.8 1.2% 78.6 0.4% 16.1 -16.7% 1.2%

Table 6. Performance comparison between the original and proposed methods on VideoMME, NExt-QA-MC, and NExt-QA-OE bench-
marks with different relative token budgets on Llava-Video-7B model. Drop indicates the relative performance decrease compared to the
original method.

contrast, both StreamingLLM and FastV exhibit noticeable
drops in accuracy.

We further test the performance of two extra models:
Qwen2-VL-7B and InternVL-2.5-8B. As shown in Table 9,
our method performs well compared to original models on
VideoMME.

8.1.5. Retrieval Benchmark Details

We further investigate the retrieval accuracy details with the
VideoNIAH benchmark, as shown in Figure 15. Frame-
Fusion demonstrates similar retrieval performance as the
original dense model, with consistent performance across
lengths and positions. In contrast, StreamingLLM hardly
retrieves the initial frames of the video. FastV does not
show particular failure patterns but undergoes uniform per-
formance degradation across grids.

8.1.6. Performance on Image Benchmark
We further investigate our method’s performance on an im-
age benchmark: MMMU-Pro-standard. As shown in Ta-
ble 10, although our method is not designed for image in-
puts, it still demonstrates comparative performance.

8.2. Efficiency
8.2.1. Efficiency Across Different Model Sizes
We evaluate the scalability of FrameFusion ’s efficiency
across different model sizes, as shown in Figure 17 and
18. To accommodate the increased KV-Cache and mem-
ory overhead, we distribute models across multiple GPUs.
With larger models, FrameFusion achieves greater end-to-
end speedups, delivering 2.8↔ for Llava-Video-32B on two
GPUs and 3.2↔ for Llava-Video-72B on four GPUs at a
30% token budget. Besides, FrameFusion reduces memory
consumption for KV-Cache to 37% for Llava-Video-32B
and 51% for Llava-Video-72B with a 30% token budget.
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Model Method Short Medium Long KL FT SC AP LR ML

Llava-Video-7B

Original 75.8 61.7 52.2 63.1 67.2 61.8 61.7 63.7 58.9

StreamingLLM 63.4 54.1 46.4 55.1 57.2 56.0 54.2 52.9 48.9
FastV 68.4 58.0 49.6 59.1 60.0 58.9 57.8 58.1 55.6
PruMerge 69.7 60.1 50.2 59.1 63.6 59.1 58.9 60.6 57.8
Ours 74.0 59.8 50.0 62.7 63.6 58.0 61.7 60.8 56.7

Llava-Video-72B

Original 80.9 69.7 62.1 73.2 74.4 68.0 71.4 68.9 62.2

StreamingLLM 68.2 59.9 59.8 65.7 66.7 59.3 65.6 58.7 58.9
FastV 73.0 64.9 60.2 66.8 72.8 61.1 69.2 63.2 61.1
PruMerge 74.0 65.8 60.3 70.4 73.6 62.9 68.3 61.6 54.4
Ours 78.3 67.9 60.9 72.2 73.1 65.6 69.7 65.9 61.1

NVILA-2B

Original 61.4 48.9 42.4 47.2 56.4 49.8 55.0 51.0 52.2

StreamingLLM 52.9 43.9 40.3 43.0 49.2 46.2 50.6 44.4 43.3
FastV 53.7 45.6 40.8 43.8 49.7 46.2 51.4 46.7 43.3
PruMerge 53.9 45.0 43.1 43.5 52.8 45.8 51.7 48.1 45.6
Ours 61.3 47.0 43.0 48.3 55.6 48.2 55.3 49.8 45.6

NVILA-8B

Original 74.9 62.1 54.7 64.8 66.4 62.2 61.9 63.7 63.3

StreamingLLM 61.2 53.8 48.0 54.9 57.8 54.7 52.5 52.2 55.6
FastV 72.0 56.7 50.0 60.7 62.8 57.6 57.8 58.9 57.8
PruMerge 67.6 54.9 48.3 57.3 61.1 56.0 54.7 56.2 55.6
Ours 74.2 57.7 51.3 60.7 65.3 59.3 58.6 62.1 58.9

NVILA-15B

Original 77.3 64.7 55.3 67.2 68.1 62.7 63.3 66.2 66.7

StreamingLLM 63.8 57.4 54.3 60.6 60.6 55.6 58.6 56.5 60.0
FastV 69.2 58.7 53.9 62.8 63.3 57.1 60.8 58.1 63.3
PruMerge 66.0 59.3 52.6 61.0 61.1 55.1 57.5 59.8 61.1
Ours 73.2 62.3 55.0 64.6 68.1 60.9 61.1 62.5 65.6

MiniCPM-V-8B

Original 69.1 56.6 49.8 59.0 63.6 54.2 63.3 54.9 60.0

StreamingLLM 61.1 51.8 48.4 54.6 58.1 52.2 56.4 49.7 55.6
FastV 67.1 53.9 49.2 57.2 59.2 53.8 60.8 54.6 56.7
Ours 69.7 54.1 48.3 57.9 63.1 53.8 60.3 54.4 56.7

Table 7. Numeric VideoMME scores of different methods and model sizes across various video categories. “KL”, “FT”, “SC”, “AP”, “LR”,
“ML” are short for “Knowledge”, “Film & Television”, “Sports Competition”, “Artistic Performance”, “Life Record”, and “Multilingual”.

Number of frames Max.
Method 64 85 107 128 Relative Drop
Original 76.4 78.4 80.7 82.9 -

StreamingLLM 23.3 25.8 27.6 27.6 70%
FastV 58.2 63.6 65.8 69.3 24%
Ours 75.3 78.2 80.0 83.6 1%

Table 8. Numeric VideoNIAH retrieval accuracy of different
methods across various frame counts.

8.2.2. Token Reduction Details
FrameFusion reduces computational cost through both to-
ken merging and pruning. Using 128 samples from the

Setting Qwen2-VL-7B InternVL-2.5-8B
Original Ours Original Ours

w/o sub 55.9 58.4 63.1 62.3
w/sub 60.6 61.1 66.3 64.2

Table 9. Performance comparison between original and Framefu-
sion of Qwen2-VL-7B and InternVL-2.5-8B on VideoMME.

VideoMME dataset with the Llava-Video-7B model, we
calculate the token count per layer. As shown in Fig-
ure 19, FrameFusion progressively reduces tokens per layer,
achieving the desired relative token budget (represented by
the area under the line).
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Method Token Budget
Original* StreamingLLM FastV 0.3 0.5
PruMerge Ours 0.7 1.0

Figure 11. The accuracy-computation trade-offs of various token
compression methods, tested on Llava-Video-7B with VideoMME
benchmark. Original* represents the original model with reduced
frame rates.

Method Token Budget
Original* StreamingLLM FastV 0.3 0.5
PruMerge Ours 0.7 1.0

Figure 12. The accuracy-computation trade-offs of various to-
ken compression methods, tested on NVILA-8B with VideoNIAH
benchmark. Original* represents the original model with reduced
frame rates.

Figure 13. The VideoMME performances for the Llava-Video-7B
across various numbers of input frames.

Model Original Fastv Ours
NVILA-2B 23.6 23.8 23.1
NVILA-8B 30.3 28.7 29.0
NVILA-15B 36.1 30.6 32.8

Table 10. The MMMU-Pro-standard performance across NVILA-
2B, 8B, and 15B for different methods.

Choice VideoNIAH VideoMME NExt-QA Avg.
inner product 71.3 58.9 55.0 61.7
minkowski-2 71.3 60.9 57.1 63.1
minkowski-1 71.3 61.0 57.0 63.1
cosine similarity 75.1 61.4 56.9 64.5

Table 11. Performance of different distance calculation strate-
gies with the same relative token budget of 30% on VideoNIAH,
VideoMME, and NExt-QA.

8.3. Ablation Study
8.3.1. Similarity Computation Strategy
We empirically study whether our approach successfully
finds the most similar token pairs. All three O(N) com-
plexity strategies are compared against the posterior optimal
upper bound, which merges the most similar tokens using
the full N ↔ N similarity computation. As shown in Fig-
ure 20, given different merging rate, the token pairs found
by our method constantly shows the highest average simi-
larity. We successfully reach 90% average similarity with
only 1/104 computing overhead. Further ablations are de-
tailed in Section 5.5

8.3.2. Distance Metrics
FrameFusion adopts cosine similarity as the distance metric
between tokens. To evaluate the impact of different distance
metrics, we replace cosine similarity with the inner product,
Minkowski-2, and Minkowski-1 distance. We test the per-
formance of FrameFusion at a 30% token budget. As shown
in Table 11, the average accuracy using cosine similarity is
2.8%, 1.4%, and 1.4% higher than the baseline metrics, re-
spectively.

8.3.3. Choice of Similarity Threshold
We conduct ablation studies on the sensitivity of the simi-
larity (Sthreshold) and merging-pruning transition (Nthreshold)
thresholds on NVILA-8B. As shown in Table 12, our
method shows robust performance to threshold variations.

8.3.4. Effect of Positional Embedding
We investigate the impact of positional embeddings on to-
ken similarity. Specifically, we compare models with and
without positional embedding at the first layer and ana-
lyze the resulting changes in the similarity of the input hid-
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7B 32B 72B

Figure 14. The VideoMME performance for each category across Llava-Video-7B, 32B, and 72B for different methods. All scores are
normalized by the original model.
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Figure 15. VideoNIAH retrieval accuracy of the Llava-Video-7B and MiniCPM-V-8B models using different token compression methods
across varying video lengths and retrieval positions. All token compression methods employ 30% relative token budget.

Threshold Value VideoNIAH VideoMME NeXT-QA-mc

Sthreshold

0.6 73.6 56.9 56.5
0.7 (default) 73.3 57.4 56.3
0.8 72.9 57.6 56.5
0.9 72.2 57.7 56.3

Nthreshold

0.1 (default) 73.3 57.4 56.3
0.2 74.0 57.6 56.5
0.3 74.2 57.5 56.5

Table 12. Performance of different similarity and merging-pruning
transition thresholds on VideoNIAH, VideoMME, and NExt-QA.

den states to the second layer. The results show that the
L1-norm of the similarity matrix changes by an absolute
amount of 0.0087 ± 0.0010, corresponding to a relative
change of 2.73%±0.66%. It shows that the token contents,
rather than the positional embeddings, dominate token sim-
ilarity.

9. Asymptotic Complexity Analysis
We estimate the computing cost of FrameFusion following
the approach of FastV [3]. Given a model with L layers
and a specified relative token budget C, FrameFusion op-
erates in the merging stage from layer 0 to layer K ↗ 1,
then transitions to the pruning stage at layer K. Let Nl de-
note the number of tokens in layer l before token reduction
at this layer. Note that Nl+1 represents the number of to-
kens of layer l after token reduction, and we let N→1 equal
the original input token length N . FrameFusion reduces Nl

with merging and pruning at the initial K + 1 layers. After
the token reduction, the remaining tokens for the successive
layers are calculated as follows:

Nl =
L↔ C ↔N ↗ (N0 + . . .+NK)

L↗K ↗ 1
, l ↘ [K + 1, L)

(4)
The model inference computation FLOPs F (Nl, Nl+1)
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Figure 16. Runtime and memory breakdown of Llava-Video-7B
on a single A100-80GB GPU using FrameFusion. A relative token
budget of 1.0 represents the original dense model. Numbers on
bars show (a) LLM and end-to-end speedups and (b) LLM’s KV-
Cache and total relative memory.

Figure 17. Runtime and memory breakdown of Llava-Video-32B
on two A100-80GB GPUs using FrameFusion. A relative token
budget of 1.0 represents the original dense model. Numbers on
bars show (a) LLM and end-to-end speedups and (b) LLM’s KV-
Cache and total relative memory.

of layer l is calculated as follows:

F (Nl, Nl+1) = 4NlD
2 + 2N2

l D + 3Nl+1DM (5)

where D denotes the hidden state size, and M denotes the
intermediate FFN size. The additional computation F

↑(Nl)
introduced by FrameFusion during similarity computation
is:

F
↑(Nl) = 3NlD (6)

Note that the additional computation F
↑ introduced by

FrameFusion shows negligible asymptotic complexity with
respect to input length and model size, compared with the
O(N2

D) and O(ND
2) complexities of the original model.

Figure 18. Runtime and memory breakdown of Llava-Video-72B
on four A100-80GB GPUs using FrameFusion. A relative token
budget of 1.0 represents the original dense model. Numbers on
bars show (a) LLM and end-to-end speedups and (b) LLM’s KV-
Cache and total relative memory.

Figure 19. Average number of tokens per layer in the Llava-Video-
7B model with FrameFusion at different relative token budgets.
Error bars represent variance across data items.

Figure 20. The average token similarity of the merged tokens for
the first layer of Llava-Video-7B model across various merging
rates.

10. Additional Observation Details
10.1. Similarity Distribution Details
We take 128 videos from the VideoMME dataset and calcu-
late the variance in token similarity across different layers.
As shown in Figure 21, the similarity variance decreases in
the deeper layers of the model, validating Observation 2.
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Figure 21. Average token similarity variance per LLM layer
in the Llava-Video-7B model, tested on 128 samples from the
VideoMME dataset. Shading represents the variance across data
items.

No significant outliers are observed in token similarity, in
contrast to the common outliers seen with respect to the
magnitude of hidden features [36, 38].

10.2. Observations on Additional Models
In addition to the analysis of the Llava-Video model in Sec-
tion 3, we conduct a similar study on the MiniCPM archi-
tecture. Results are presented in Figures 22, 23, 24, and
25.

Overall, the conclusions align with those of the Llava-
Video model, with a few notable differences: Firstly, as
shown in Figure 22, MiniCPM, which incorporates Q-
Former [17, 34], exhibits additional high similarity among
visual tokens within the same frame. However, the promi-
nent 210th sub-diagonal persists, supporting our token simi-
larity calculation strategy. Secondly, as shown in Figure 23,
high similarity decreases less steeply in deeper layers for
MiniCPM compared to Llava-Video. Despite this, the su-
perior efficiency of cascaded merging at shallower layers
ensures that Design Choice 2 remains valid.

10.3. Video Pruning Visualization
We select a video example to visualize the effect of our to-
ken merging strategy. Figure 26 shows the frames of the
original video sampled at a frame rate of 1 fps. In Figure 27,
we present the video input to the model after token merging
in Layer 0, where blank patches indicate tokens that have
been merged. Furthermore, we replace the blank regions
with the average of the merged patches, and the resulting
visualization is shown in Figure 28. As shown in the ex-
amples, FrameFusion token merging strategy successfully
merges similar visual tokens, reducing the computational
costs, while maintaining high validity of the video.

Figure 22. Token similarities between all input tokens at the first
LVLM layer in MiniCPM-V-8B.

Figure 23. Heatmap of token similarity across different model lay-
ers for the MiniCPM-V-8B model. Each cell represents the simi-
larity at a specific layer, with color intensity denoting distribution
frequency. The line overlay shows the average token similarity
across layers.

Figure 24. Spearman Rank Correlation (SRC) between adjacent
layers for the MiniCPM-V-8B model.

10.4. Importance-Similarity Joint-Distribution
We visualize the joint distribution of token importance and
similarity across different layers of Llava-Video-7B. As
shown in Figure 29, it can be observed that in the shallow
layers of the model, a significant number of tokens exhibit
both high similarity and high importance values. Frame-
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Uniqueness: Layer 1 Layer 2 Layer 3
Importance: Layer 1 Layer 2 Layer 3

Figure 25. The Top-30% retention rate across model layers for
the MiniCPM-V-8B model, using different retention metrics and
reference layers.

Fusion can effectively compress these tokens. This phe-
nomenon becomes less apparent in the deeper layers of the
model, supporting our design choice of performing token
merging in the shallow layers of the model.

11. Additional Discussion on Related Works
Prior works have also explored token merging in image-
based tasks [13, 25, 45]. For instance, while FrameFu-
sion adopts an O(N) temporal merging strategy, EVL-
Gen [13] performs O(N2) spatial merging via bipar-
tite matching among tokens. AIM [45] similarly adopts
bipartite-matching-based merging prior to the first layer of
the LLM, followed by a token pruning process in subse-
quent LLM layers, ultimately reducing the number of vi-
sual tokens to zero. LLaVA-Prumerge [25] first prunes to-
kens at the output of the visual encoder and then merges
the pruned tokens into the top-k most similar remaining to-
kens. In all these methods, the similarity computation in-
curs a complexity of O(N2). Although the computational
efficiency of is comparable at the image scale (N ≃ 256),
our method scales more effectively to video scenarios where
N can reach 10K to 1M tokens.

12. Limitation and Future Works
While FrameFusion demonstrates significant improvements
in token reduction and efficiency for video LVLMs, certain
challenges remain for future work. First, the similarity-
based merging process can be further refined to better han-
dle highly diverse or complex video content, minimizing
potential information loss. Second, the reliance on pre-
defined similarity and importance metrics calls for the de-
velopment of adaptive and task-specific strategies to im-
prove generalization across diverse scenarios. Future work
will focus on designing more robust similarity measures and
integrating FrameFusion with advanced token-efficient ar-
chitectures.
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Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

Frame 8 Frame 9 Frame 10 Frame 11 Frame 12 Frame 13 Frame 14 Frame 15

Frame 16 Frame 17 Frame 18 Frame 19 Frame 20 Frame 21 Frame 22 Frame 23

Frame 24 Frame 25 Frame 26 Frame 27 Frame 28 Frame 29 Frame 30 Frame 31

Frame 32 Frame 33 Frame 34 Frame 35 Frame 36 Frame 37 Frame 38 Frame 39

Frame 40 Frame 41 Frame 42 Frame 43 Frame 44 Frame 45 Frame 46 Frame 47

Frame 48 Frame 49 Frame 50 Frame 51 Frame 52 Frame 53 Frame 54 Frame 55

Frame 56 Frame 57 Frame 58 Frame 59 Frame 60 Frame 61 Frame 62 Frame 63

Figure 26. An example input video with 1 fps frame rate.
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Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

Frame 8 Frame 9 Frame 10 Frame 11 Frame 12 Frame 13 Frame 14 Frame 15

Frame 16 Frame 17 Frame 18 Frame 19 Frame 20 Frame 21 Frame 22 Frame 23

Frame 24 Frame 25 Frame 26 Frame 27 Frame 28 Frame 29 Frame 30 Frame 31

Frame 32 Frame 33 Frame 34 Frame 35 Frame 36 Frame 37 Frame 38 Frame 39

Frame 40 Frame 41 Frame 42 Frame 43 Frame 44 Frame 45 Frame 46 Frame 47

Frame 48 Frame 49 Frame 50 Frame 51 Frame 52 Frame 53 Frame 54 Frame 55

Frame 56 Frame 57 Frame 58 Frame 59 Frame 60 Frame 61 Frame 62 Frame 63

Figure 27. The example of the video after token merging. Merged tokens are visualized with the blank blocks.
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Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

Frame 8 Frame 9 Frame 10 Frame 11 Frame 12 Frame 13 Frame 14 Frame 15

Frame 16 Frame 17 Frame 18 Frame 19 Frame 20 Frame 21 Frame 22 Frame 23

Frame 24 Frame 25 Frame 26 Frame 27 Frame 28 Frame 29 Frame 30 Frame 31

Frame 32 Frame 33 Frame 34 Frame 35 Frame 36 Frame 37 Frame 38 Frame 39

Frame 40 Frame 41 Frame 42 Frame 43 Frame 44 Frame 45 Frame 46 Frame 47

Frame 48 Frame 49 Frame 50 Frame 51 Frame 52 Frame 53 Frame 54 Frame 55

Frame 56 Frame 57 Frame 58 Frame 59 Frame 60 Frame 61 Frame 62 Frame 63

Figure 28. The example of the video after token merging. Merged tokens are visualized with the average image patches.
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(a) Layer 0 (b) Layer 1 (c) Layer 2

(d) Layer 14 (e) Layer 15 (f) Layer 16

(g) Layer 25 (h) Layer 26 (i) Layer 27

Figure 29. Importance-similarity joint-distribution of different layers, with color intensity denoting distribution frequency.
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