
ObjectRelator: Enabling Cross-View Object Relation Understanding
Across Ego-Centric and Exo-Centric Perspectives

Supplementary Material

We first present the implementation details in Sec. 1, fol-
lowed by additional results in Sec. 2, Sec. 3, and conclude
with a discussion of limitations and future work in Sec. 4.

1. Implementation Details
1.1. Data Processing on Ego-Exo4D
Frame Extraction. We follow the same frame extraction
process as the baselines, i.e., XSegTx, XView-Xmem, as
provided by Ego-Exo4D [13]. Specifically, for both ego
and exo views, we sample one frame every 30 frames in
chronological order to ensure time synchronization. Mean-
while, since the resolution of ego and exo is different, we
adopt different scaling ratios. For ego video, we scale its
resolution from (1408, 1408) to (704, 704). While the exo
video is scaled from (2160, 3840) to (540, 960).
Train/Val/Test Sets. As described in Sec. 4, we follow the
same dataset splits as Ego-Exo4D [13]. By default, we re-
tain only the ego-exo pairs where the object is visible in
both views (in some cases, an object may be visible in one
view but fully occluded in the other). When it comes to
evaluating the VA, we test models on all cases. To construct
the SmallTrain set, we sample a subset of the FullTrain set
at a fixed frequency of 1/3. In the end, for both Ego2Exo
and Exo2Ego tasks, we have the FullTrain, SmallTrain,
and Val sets. We further report the number of frame images
(No. Img) and the average number of objects per frame
(Avg. Obj) for each set in Tab. A. All splits used in this
work will be released to the community to facilitate repro-
duction and comparison.

Ego2Exo Exo2Ego
FullTrain SmallTrain Val FullTrain SmallTrain Val

No. Img 110118 36706 31205 123381 41127 36073
Avg. Obj 2.4 2.4 2.4 2.3 2.3 2.3

Table A. Number of images and average object per image of sets.

1.2. Data Processing on HANDAL-X
We adapt the HANDAL-X from HANDAL [14] as a new
cross-view image segmentation benchmark. The vanilla
HANDAL dataset is designed for category-level object pose
estimation and affordance prediction, specifically tailored
for robotics applications. It emphasizes manipulable objects
that are ideal for robot manipulators to grasp, such as pliers,
utensils, and screwdrivers. The dataset comprises 308,000
annotated image frames extracted from 2,200 videos featur-
ing 212 distinct objects categorized into 17 groups.

The HANDAL dataset provides multi-view images cap-
turing objects from a full 360-degree perspective, along
with object-centered masks, enabling the construction of a
cross-view dataset. Specifically, HANDAL defines a train-
ing and testing split for each object, and we adopt the same
partitioning strategy for HANDAL-X. To enhance view-
point variation, we construct query-target pairs at 100-frame
intervals within each object’s training set. The same ap-
proach is applied to the test set. We then aggregate the
training pairs from all objects to form the final training set,
and similarly, we merge all test pairs to create the final test
set. As a result, our final HANDAL-X dataset consists of
44,202 training samples and 14,074 test samples.

1.3. Description Generation
Using LLaVA for Object Descriptions. Due to the lack of
semantic information in the initial benchmark, we propose
to utilize the pretrained vision language model LLaVA [40]
for generating the text description to support the subse-
quence MCFuse module. Concretely, we merge the mask
of the object of interest with the correspondence image to
create the input. This approach not only directs the model’s
attention to the masked area but also preserves the full con-
textual information, such as the background, which aids
the model in better understanding the object. As for the
text prompt, we use “Identify the single object covered by
the green mask without describing it. Note that it is not a
hand. Format your answer as follows: The object covered
by the green mask is”. By providing this text prompt and
the masked image to LLaVA, we generate the correspond-
ing object descriptions.
Comparison Among Different Options. We compare our
way of generating text descriptions with two other options.
Visual examples are provided in Fig. A. Specifically: 1)
Without Object Masking (Fig. A(a)): The entire image
is used as input without adding an object mask, and the
prompt is: “Could you help describe the main object of
the image?”. Results show that when the image contains
multiple objects, the model struggles to identify the cor-
rect one. Attempts to zoom in on the target object lead
to reduced resolution, making the image difficult for the
model to interpret. 2) With Object Masking but different
prompt (Fig. A(b)): The object is masked, and the model is
prompted with “Please describe the object covered by the
green mask.” While this approach focuses the model’s at-
tention on the masked area, it often incorrectly predicts the
object as a human hand, which is not considered an object of



“Could you help describe 
the main object of the image?”

The main object of the image is 
a person wearing blue gloves.

The main object of the image 
is a basketball hoop.

The main object of the input 
image is a pair of scissors.

The object covered by the 
green mask is a basketball.

"Please describe the object
covered by the green mask."

The object covered by the 
green mask is a hand.

The object covered by the 
green mask is a person's hand.

"Identify the single object covered by
the green mask without describing it.
Note that it is not a hand. Format your
answer as follows: The object covered
by the green mask is"

The object covered by the 
green mask is a bowl.

The object covered by the 
green mask is a spoon.

The object covered by the green 
mask is a bicycle wheel.

(a) option1

(b) option2

(c) ours

zoom in

Figure A. Comparisons among various options for text generation.

interest in this benchmark. 3) Our Approach (Fig. A(c)):
We use an object-masked image as input and a prompt that
explicitly excludes the human hand. Results show signifi-
cant improvement, as the generated descriptions align with
the target object categories in most cases.

Error Rate and Ambiguity Robustness Analysis. To fur-
ther quantitatively assess the quality of our generated text
descriptions, we randomly sample 50 frames from each sce-
nario and evaluate both error rate and ambiguity robustness.
For the error rate, a description is considered correct if it
accurately reflects the object in the image; otherwise, it is
counted as an error. We report results using both human
and GPT-4o as judges. For ambiguity robustness, we run
inference using our trained model on the subset of samples
where the descriptions were judged correct by humans. We
then report the IoU scores and compare them with those
obtained using ground-truth text as input. Results are sum-
marized in Tab. B.

From the results, we acknowledge that the generated de-
scriptions are not always perfect, with an accuracy around
80%. Given the complexity of ego-centric frames, such as
small objects and motion blur, the overall quality remains
strong. As shown in Tab. 2 and Tab. 3, the auto-generated
text descriptions significantly contribute to performance im-

Evaluation Type Method Metrics

Error Rate Human Judge 22.1%
GPT-4o Judge 16.9%

Ambiguity Robust Our predicted text 54.45 IoU
Ego-Exo4D GT text 55.44 IoU

Table B. Study on the quantity of generated text descriptions.

provements. Furthermore, the ambiguity robustness results
indicate that our MCFuse module performs well.

1.4. Training Details
Almost all models, including the base retrained PSALM,
our ObjectRelator, and the ablation studies of ObjectRe-
lator, share the same basic training setup: the pretrained
PSALM model [75] is used as the initialization, AdamW is
employed as the optimizer, the learning rate is select from
6e-5, 2e-4 with a cosine decay scheduler, the batch size is
12, and the image size is 1024!1024. By default, models
without MCFuse are trained in a single stage (4 epochs) us-
ing all the data in the current training set. In contrast, mod-
els with MCFuse, such as our ObjectRelator, employ two
training stages, S1 and S2, with different epoch settings and
data usage. The specific training configurations for our Ob-
jectRelator are summarized in Tab. C.



Ego2Exo/Exo2Ego/HANDAL-X Training Joint Training
S1 1/20 set, epoch = 4 1/20 set, epoch = 3
S2 all set, epoch = 4 all set, epoch = 3

Table C. Training settings for ObjectRelator.

All training runs on 4xA100 GPUs, while testing is con-
ducted on a single A100, A6000, or L4. Training on Ego-
Exo4D Small TrainSet or HANDAL-X takes 5-6 hours,
while Ego-Exo4D Full TrainSet takes around 20 hours.

2. More Results
2.1. More Ablations on MCFuse
To thoroughly assess the optimality of our design, we con-
duct additional ablations applying various options to MC-
Fuse. These include testing: whether cross attention (CA) is
the best method for fusing conditions; the impact of adopt-
ing a learnable residual connection; the usage of the learn-
able weight; and the most suitable placement for applying
MCFuse. The results are presented in Tab. D.

Ablation Factor Method IoU→

Fusion Add 42.6
CA w/o Params 42.1
CA, S2 22.0
CA+LearnResidual, S2 41.3
CA+LearnResidual, S1-2 (Ours) 43.2

Residual Weight klea = 0.2 42.1
klea = 0.5 41.7
klea = 0.8 43.1
klea (Ours) 43.2

Placement of MCFuse Before XObjAlign 43.6
After XObjAlign (Ours) 44.3

Table D. Ablation study on MCFuse. Models are trained on
Ego2Exo Small TrainSet.

For the fusion-related experiments, we designed four
variants: “Add”, “CA w/o Params”, “CA, S2”, “CA +
LearnResidual, S2”. The “Add” method simply adds the
ego text and visual conditions as an easy test of our gener-
ated text descriptions and also the idea of multi-condition
fusion. The “CA w/o Params” variant applies cross-
attention without parameters, formulated as (Eego

T
·Eego

V

T
)·

Eego

V
, which helps evaluate model sensitivity to added pa-

rameters. “CA, S2” represents standard cross-attention fu-
sion, as shown in Eq. 3.2. “CA + LearnResidual, S2”
uses our MCFuse module. The “S2” denotes that the en-
tire network is trained only once (i.e., our second training
stage). Results show: 1) Even simple methods like “Add”
and “CA w/o Params” improve upon the base model, val-
idating MCFuse’s core concept. 2) The notable drop with
“CA, S2” suggests caution when introducing new param-
eters into other pre-trained modules, motivating our two-
stage training strategy. This strategy is further validated by

comparing “CA + LearnResidual, S2” with our MCFuse.
3) The improvement from “CA, S2” to “CA + LearnResid-
ual, S2” supports protecting the more reliable visual prompt
condition. For the residual weight experiments, we com-
pare our learnable approach with fixed weights klea (0.2,
0.5, 0.8). Results indicate that learnable weight klea reduces
manual tuning while effectively adapting to appropriate val-
ues. Regarding the placement of MCFuse, we compare
put MCFuse “Before XObjAlign” with “After XObjAlign”.
Results show the latter is more effective, likely because ap-
plying the alignment loss LXObj upon MCFuse may skew
optimization toward better fusion objectives.

2.2. More Ablations on XObjAlign
Additionally, we provide further ablation studies on the
XObjAlign module, including various metrics for comput-
ing the consistency constraint and different weights for
LXObj . Particularly, as in Tab. E, we first compare the per-
formance of using the Euclidean loss for XObjAlign with
that of using cosine similarity, and then compare different
weights for composing the sublosses Lmask and LXObj .
Note that only the XObjAlign module is applied.

Ablation Factor Method IoU→

- Base PSALM [75] 39.7
Metrics for XObjAlign Cosine 42.5

Euclidean (Ours) 43.8
Loss Weights L = Lmask + 0.2 ↑ LXObj 41.2

L = Lmask + 0.5 ↑ LXObj 42.0
L = Lmask + LXObj (Ours) 43.8
L = Lmask + 10 ↑ LXObj 40.3

Table E. More ablation studies on XObjAlign and loss functions.
Models are trained on Ego2Exo Small TrainSet.

Results show that: 1) Compared to the cosine similarity,
the Euclidean loss is better. However, both of them clearly
outperform the base PSALM. 2) Among different choices,
the default one L = Lmask + LXObj achieves the best
result. The consistent improvement over the baseline ob-
served across other weight ratios further demonstrates the
robust positive impact of our XObjAlign module.

2.3. First-Frame Query Evaluation
Ego-Exo4D provides frame-level correspondence between
ego and exo videos, while such extensive annotation might
be impractical in the real world. Thus, we also test Objec-
tRelator under a more realistic scenario where only a first-
frame query is provided. To adapt our model to this setting,
we introduce a memory mechanism during inference. Tak-
ing Ego2Exo as an example, beyond the first frame—where
the ego object mask serves as the query—the predicted re-
sults from previous exo frames are used as queries for sub-
sequent exo frames. The results are presented in Tab. F.
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Figure B. Visualization of failure cases.

Method Testing Query Ego2Exo→ Exo2Ego→

ObjectRelator Frame Level (Ours) 44.3 49.2
1-st Frame + Memory 37.0 43.7

Table F. ObjectRelator with all frame-level queries vs. only 1st
frame query. Model trained on Small TrainSet is tested.

Results show that though not as good as the frame-level
queries, our ObjectRelator could still work under this case.

2.4. More Visualization Results
Due to space limitations, only a few examples are pre-
sented in Fig.4. We include additional visualization results
in Fig.C (Ego2Exo) and Fig. D (Exo2Ego). For each sub-
task, we showcase diverse examples spanning all six scenar-
ios: Cooking, BikeRepair, Health, Music, Basketball, and
Soccer. Results demonstrate that our proposed ObjectRe-
lator effectively segments cross-view objects in most cases,
producing results that closely align with ground truth an-
notations. This highlights the robustness of our method in
handling diverse scenarios, various object categories, and
challenging cases, such as occlusion and novel viewpoints.
We also provide visualization results (Fig. E) on HANDAL-
X. 15 examples across diverse categories are demonstrated.
Our model accurately predicts masks matching the ground
truth, with only a few failures highlighted in red circles.

3. Failure Cases
We also analyze the failure cases produced by our method,
with typical examples summarized in Fig. B. Results indi-
cate that our method struggles in several scenarios: it fails
to generate a complete mask when the object’s surface is
discontinuous or blends closely with the background (first
and third columns), incorrectly identifies the object when
multiple similar objects are present in the scene (second and
fourth columns), and occasionally misses some objects en-
tirely (fourth column).

4. Limitations and Future Work
In this paper, we propose ObjectRelator, a method de-
signed to understand cross-view object relationships in
terms of segmentation, validated on ego-exo perspectives
and a relatively easier cross-view dataset. The approach
primarily consists of multimodal condition fusion and SSL-
based cross-view object alignment, built on top of a frame-
level multimodal segmentation model. While our method
achieves SOTA results, as demonstrated in Fig. B, there
still remains significant room for improvement. This under-
scores the substantial challenges and rich opportunities in
addressing ego-exo object correspondence. Looking ahead,
we plan to explore the integration of temporal information
to better capture object dynamics.
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Figure C. Ego2Exo visualization results (ego query, predictions, and ground truth). Ego2Exo model trained on SmallTrain set is used.
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Figure D. Exo2Ego visualization results (exo query, predictions, and ground truth). Exo2Ego model trained on SmallTrain set is used.
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Figure E. HANDAL-X visualization results (query, predictions, and ground truth).
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