RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS

Supplementary Material

1. Discussions

Sparse Gaussian Initialization and Gaussian Densification The optimization of 3D Gaussian Splatting (3DGS) relies on
an initial set of points obtained via Structure-from-Motion (SfM). Since SfM reconstructs sparse point clouds based on multi-
view consistency, transient objects that remain stationary in multiple captured images before moving can introduce noisy
points into the reconstruction. As a result, 3DGS may initially fit these transient regions, even before Gaussian densification
takes place.

As illustrated in Fig. S1, in the Patio scene from the NeRF On-the-go dataset, moving subjects remained stationary for a
period, leading to COLMAP reconstructing noisy points corresponding to these transient objects. As a result, 3DGS initially
fits to these transient regions. However, with longer optimization, our transient mask estimation progressively removes these
artifacts. This observation highlights that by applying a transient mask to filter dynamic regions, our method effectively
mitigates the impact of noisy initialization, leading to improved reconstruction quality.

Figure S1. Gaussians initialization with inaccurate COLMAP SfM point clouds may affect the early optimization stage.

Illumination Variations In real-world environments, besides transient disturbances, illumination changes can introduce
multi-view inconsistencies, leading to floating artifacts. Our method mainly addresses transient object interference. However,
when abrupt illumination changes occur in a scene, our approach fails to correctly model the actual lighting variations due to
the absence of an explicit illumination model Fig. S2. A promising direction for future work is to incorporate illumination
modeling into our method, enabling the handling of more complex outdoor datasets.

Feature Extraction for Mask Estimation In the main text, we discuss the impact of different feature types on mask
learning. DINOvV2 performs well due to its efficiency and the reliable consistency of features within similar object categories.
However, its patch-based nature introduces inconsistencies at the edges when extended to high-resolution settings, limiting
the effectiveness of our mask predictor. In this work, we slightly expand the mask by applying dilation with a kernel size of
7. In the future, we will explore integrating more expressive and efficient feature extractors for mask learning.

2. More Details for the Method

Training Details The original 3DGS [1] resets the opacity starting from the 3000 iterations while maintaining an interval
of 3000 iterations. This operation aims to eliminate the accumulation of low-opacity Gaussian primitives in regions close to
the camera, which can interfere with gradient backpropagation and manifest as artifacts. However, the opacity reset is no
longer suitable for our method due to the delayed Gaussian growth. Therefore, we delay the opacity reset to start from the
15000 iterations while maintaining the same interval of 3000 iterations. Meanwhile, the start of pruning is also delayed to
10000 iterations to align with delayed Gaussian growth.
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Figure S2. Illumination changes in real-world scenes.

Robust Loss based on Image Residuals The image robust loss used in our mask predictor follows [5]:
Liesiaual = maz (U —M),0) +maz (M —L),0), (1)

where M is the mask we predicted, U and L are upper and lower bound of the dynamic residual mask, respectively, which
determined by different values of the parameter 7. In our method, the parameters are set to 7,, = 0.6 and 7; = 0.8 for all
experiments.

3. Runtime Evaluation

Our method adopts the lightweight DINOv2 model ViT-S/14-distilled, with a feature dimensionality of 384, for feature
extraction. As shown in Table S1, our method runs slightly slower than 3DGS but remains faster than other methods. Spot-
LessSplats achieves similar optimization time without iterative feature extraction, but its SD features, with a dimensionality
of 1280, require a long processing time before training.

Table S1. Runtime evaluation on an NVIDIA RTX 3090 (unit: minutes). The runtime of SpotLessSplats is divided into two parts: training
and SD feature extraction.

Method Mountain ~ Fountain Corner Patio Spot Patio-High
#lmg 120  #Img 169  #Img 101  #Img99  #Img 169  #Img 222
3DGS 12.21 14.37 9.986 7.707 11.68 12.82
SpotLessSplats  13.48+6.9 16.07+9.8 14.15+6.4 13.82+6.4 13.03+9.5 14.07+13.7
WildGaussians 32.63 52.90 33.58 29.93 27.32 33.86
Ours 1543 17.33 13.32 12.82 12.95 14.35
4. More Ablation Study

Effects of Mask Regularization. Initial mask estimation yields suboptimal results in most scenes due to unconverged re-
construction at early training stages. To address this challenge, we introduce a mask regularization for stabilizing early-stage
mask training. Table S2 shows that removing the proposed mask regularization leads to a decrease in overall performance.
Effects of Delayed Gaussian Growth. We discussed the effectiveness of Delayed Gaussian Growth in Section 4.3 of the
main paper. To further validate its effects, we extend the Delayed Gaussian Growth to 3DGS in this supplementary material.
Table S3 shows that integrating the delayed Gaussian growth into 3DGS leads to improve results, but its performance is
limited by the lack of predicting the transient masks.



Table S2. Effects of Mask Regularization. We denote Mask Regularization as “MR”.

Method Mountain Fountain Corner Patio Spot Patio-high
PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM

Ours w/o MR | 21.09 0.728 | 20.87 0.701 | 26.18 0.889 | 21.61 0.826 | 25.63 0.907 | 22.68 0.837

Ours 2115 0.737 | 21.01 0.701 | 26.42 0.897 | 21.63 0.827 | 26.21 0.907 | 22.87 0.837

Table S3. Effects of Extending Delayed Gaussian Growth to 3DGS. We denote Delayed Gaussian Growth as “DG”.

Method Mountain Fountain Corner Patio Spot Patio-high
etho PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR  SSIM
3DGS 1921 0.691 | 20.08 0.686 | 22.65 0.835 | 17.04 0.713 | 18.54 0.717 | 17.04 0.657
3DGS+DG | 20.14 0.693 | 2035 0.683 | 23.54 0.864 | 1746 0.728 | 23.42 0.854 | 18.87 0.728
Ours 2115 0.737 | 21.01 0.701 | 2642 0.897 | 21.63 0.827 | 26.21 0.907 | 22.87 0.837

5. Evaluation on On-the-go II Dataset

The NeRF On-the-go II dataset [4] is more challenging compared to the other scenes of NeRF On-the-go, as it consists of
outdoor scenes that include not only dynamic objects but also motion blur and varying lighting conditions. Since the testing
images in the On-the-go II dataset contain moving objects, we manually segment and exclude these objects when computing
the metrics to ensure a fair evaluation.

We can see from Table S4 that our method achieves nearly the best results across all six scenes, except for the second-best
performance in the PSNR metric on Statue. Moreover, our method outperforms existing methods and achieves state-of-the-
art regarding average metrics. Figure S3, Figure S4, and Figure S5 present qualitative comparisons with existing methods on
the NeRF On-the-go II dataset. Our method successfully eliminates artifacts (e.g., vehicles in the Drone) and recovers finer
details (e.g., thin cables in the Train-station), further demonstrating its effectiveness in handling complex scenarios.

Table S4. Quantitative comparison on NeRF On-the-go II Dataset. The best results are highlighted in bold, and the second in underline.

Method Arcdetriomphe Drone Statue Train Train-station Tree Mean
o PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
3DGS [1] 2557 0926 | 21.37 0.830 | 1595 0.751 | 22.49 0.847 | 2143 0.871 | 2244 0.846 | 21.54 0.845

SpotLessSplats [5] | 28.70 0.940 | 20.87 0.800 | 1601 0.737 | 2328 0.841 | 21.37 0.815 | 23.00 0.834 | 22.21 0.828
WildGaussians [2] | 2425 0.898 | 21.31 0.815 | 17.32  0.795 | 23.81 0.852 | 22.50 0.846 | 22.77 0.832 | 21.99  0.840
Robust3DGS [6] | 2636 0933 | 18.69 0.785 | 14.66 0.724 | 23.79 0.860 | 20.67 0.833 | 22.73 0.868 | 21.15 0.834
T-3DGS [3] 28.86  0.943 | 21.08 0.820 | 16.57 0.756 | 24.3¢  0.870 | 21.87 0.851 | 23.14 0.870 | 22.63 0.852
Ours 2943 0949 | 21.62 0.844 | 16.65 0.802 | 24.07 0.871 | 2278 0.871 | 23.57 0.868 | 23.02 0.868

6. Comparison of Mask Estimation

Figure S6 compares the transient mask estimation results of our method with existing methods. Our method can better filter
the transient objects while keeping the static regions, leading to less artifacts and sharp details in the rendering images.

References

[1] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splatting for real-time radiance field
rendering. TOG, 2023. 1, 3

[2] Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, and Torsten Sattler. Wildgaussians: 3d gaussian splatting in the
wild. arXiv preprint arXiv:2407.08447, 2024. 3

[3] Vadim Pryadilshchikov, Alexander Markin, Artem Komarichev, Ruslan Rakhimov, Peter Wonka, and Evgeny Burnaev. T-3dgs: Re-
moving transient objects for 3d scene reconstruction. arXiv preprint arXiv:2412.00155, 2024. 3

[4] Weining Ren, Zihan Zhu, Boyang Sun, Jiaqi Chen, Marc Pollefeys, and Songyou Peng. Nerf on-the-go: Exploiting uncertainty for
distractor-free nerfs in the wild. In CVPR, 2024. 3

[5] Sara Sabour, Lily Goli, George Kopanas, Mark Matthews, Dmitry Lagun, Leonidas Guibas, Alec Jacobson, David J Fleet, and Andrea
Tagliasacchi. Spotlesssplats: Ignoring distractors in 3d gaussian splatting. arXiv preprint arXiv:2406.20055, 2024. 2, 3

[6] Paul Ungermann, Armin Ettenhofer, Matthias Nieiner, and Barbara Roessle. Robust 3d gaussian splatting for novel view synthesis in
presence of distractors. arXiv preprint arXiv:2408.11697, 2024. 3



WlldGaussmns

SpotLessSplats

RobustﬁDGaussians

Ground Truth

Figure S3. Qualitative results on Drone in NeRF On-the-go II dataset.
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Figure S4. Qualitative results on Train-station in NeRF On-the-go II dataset.
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Figure S5. Qualitative results on Tree in NeRF On-the-go II dataset.
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Figure S6. Comparison of transient mask in NeRF On-the-go dataset.
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