Appendix for TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance

Figure 1. Generation examples of failure cases. Prompt: 1) not a cat. 2) liquid glass. 3) cold fire.

A. More Experimental Results and Analyses

A.1. Quantitative Analysis of Additive Text Embeddings

To validate the effectiveness of additive text embeddings, we conducted quantitative experiments across different text-to-image models. The cosine similarity between original and fused embeddings (Cos Sim. $_{\rm txt}$) and their corresponding generated images (Cos Sim. $_{\rm img}$) are summarized in the table below:

Metric	SD3	In-house T2I	FLUX.1-dev
Cos Sim. _{txt}	0.8073	0.8192	0.8286
Cos Sim.img	0.8732	0.9137	0.9318

These results confirm that additive embedding operations preserve over 80% cosine similarity in text space and over 90% in image space, demonstrating their ability to merge diverse semantic patterns effectively.

A.2. Operational Boundaries and Failure Cases

Our fusion mechanism $\mathcal{G}(\psi(w)) \mathcal{F}(c-\varnothing)$ operates within the encoder's linear regime through bounded sine-cosine positional encodings $(\|\mathcal{G}(\psi(w)) \mathcal{F}(c-\varnothing)\|_2 \le \delta)$. However, failure cases arise when:

- Semantic vectors exhibit non-orthogonality (e.g., contradictory phrases like "cold fire")
- Contextual interference occurs in composite prompts (e.g., "not a cat")

These limitations are visualized in Figure 1.