SALAD ** — Semantics-Aware Logical Anomaly Detection

Supplementary Material

This supplementary material includes additional infor-
mation and visualisations. More specifically, we ablate the
object composition map generation and add a further exper-
iment to verify the importance of each branch. Ultimately,
we add localisation results for MVTec LOCO and more
qualitative examples.

A. Limitations and Failure Cases

Composition map creation depends on the performance of
SAM-HQ and DINO, although they perform very well across
diverse datasets. In the future, this can even be improved
with stronger models (e.g. Perception Encoder). Addition-
ally, there are also some cases (some are depicted in Figure 1)
in which SALAD fails to detect anomalies. SALAD mostly
fails on extremely near-distribution structural (Columns 1-
6) and logical anomalies (Columns 7-10). Architectural
improvements to the compositional and appearance branch
might improve this.

B. Differences from other methods utilising
composition maps

Currently, there are three different methods using com-
position maps — ComAD [10], CSAD [7] and PSAD [9].
SALAD’s biggest difference from all three is the introduction
of a specialised composition branch. This means SALAD is
directly trained on the composition maps in contrast to the
other three. Additionally, CSAD and PSAD require extra
category-specific information, either via hand-labelled sam-
ples or via category-specific composition map procedures.
SALAD performs all of this automatically without any addi-
tional information. ComAD produces composition maps of
low quality, whilst SALAD produces high-quality maps.

C. Object composition map generation ablation

This section compares the design choices for the object com-
position map generation. First, we examine the effect of
using a different feature extractor than DINO [3]. Then, we
examine the importance of the number of clusters parameter.
Different feature extractor To evaluate the choice of feature
extractor in component map generation, we replaced the
original with other standard feature extractors: ResNet50 [6],
ResNet50 DINO [3], SAM [8], ViT DINOv2 [12]. Their
performance is qualitatively evaluated by comparing feature
clusters C'tcqt, pseudo labels Cpgendo, and final composition
maps C. Figure 2 depicts that ResNet50, ViT DINOv2, and
ViT DINO cluster features effectively, discriminating similar
objects (e.g., Columns 5 and 6). In contrast, ResNet, DINO

Condition Det. Logical  Det. Struct. Det. Avg
Only Appearance branch 87.5(-9.0) 94.1 (-1.6) 90.8 (-5.3)
Only Composition branch 88.1(-8.4) 82.8 (-12.9) 85.4(-10.7)
Only Global branch 90.8 (-5.7) 87.3 (-8.4) 89.1 (-8.1)
SALAD 96.5 95.7 96.1

Table 1. Branch importance is evaluated with the downstream per-
formance in Anomaly detection on the MVTec LOCO dataset [2]
(results are presented in AUROC). The importance is evaluated
by using only one branch. The results are categorised by anomaly
type, and the overall average detection rate is reported in the final
column. The performance difference relative to the base model is
highlighted in blue.

and SAM yield poor clusters, as seen in Columns 3 and 4.
This pattern continues with pseudo labels in Figure 3, where
ResNet DINO and SAM exhibit loss of detail and class
mismatches (Columns 7 and 8). Due to noisy pseudo labels,
the lightweight semantic segmentation model struggles with
generalisation (Figure 4, Columns 7 and 8). Consequently,
we evaluated downstream anomaly detection performance
only for ViT DINO [3] and ViT DINOvV2 [12], with results
detailed in the main paper.

Different number of clusters To investigate the importance
of the number of clusters during composition map genera-
tion, we qualitatively and quantitatively assessed the output
composition maps. More specifically, we checked for dif-
ferent values of K ranging from 4 to 8. We qualitatively
assessed the feature clusters, pseudo-labels and the gener-
ated composition maps. The results for different stages in
the pipeline can be seen in Figure 5, Figure 6 and Figure 7.
From the Figures, it can be seen that there are no significant
differences, especially with the final composition maps. This
would suggest that the choice of the number of clusters is
robust (once it is high enough). In Figure 8, the effect of
this parameter on downstream anomaly detection is depicted.
All values are above the current state-of-the-art, suggesting
that the parameter choice is robust.

D. Branch importance

To further show the overall importance of each branch, we
evaluated the model by using one branch at a time. The
results can be seen in Table 1 and in Table 2. Using only
the appearance branch leads to a drop in performance of 9.0
percentage points (p. p.) for logical anomalies and 1.6 p. p.
for structural anomalies. Using only the composition branch
leads to a drop of 8.4 p. p. on logical anomalies and a 12.9 p.
p. drop for structural anomalies. By solely using the global
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Figure 1. Failure case results. In all of the cases, SALAD produces a very low anomaly score. Most of the cases also represent near-
distribution logical and structural anomalies.
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Figure 2. Qualitative comparison of the feature clusters C'eq; produced by 5 different feature extractors: ResNet50 [6], ResNet50 DINO [3],
SAM [8] and ViT DINO [3]. In the bottom row, the original image I is shown. It can be observed that both ViT DINOv2 and ViT DINO
separate the objects effectively (e.g. Columns 5 and 6), while other feature extractors face problems (e.g. Columns 3 and 4).

branch, the performance drops 5.7 p. p. for logical anomalies F. Additional qualitative results
and 8.4 p. p. for structural anomalies. The results show that
the branches complement each other, especially with logical
anomalies.

In this section, we provide additional qualitative mask com-
parisons to the state-of-the-art models DRAEM [16], Trans-
Fusion [5] and EfficientAD [1]. The comparisons can be

E. Localization results for MVTec LOCO seen in Figure 10 and Figure 11. SALAD can detect more
’ near-distribution and harder anomalies compared to previous

Following recent literature [1, 15], the AUsSPRO Met- state-of-the-art methods.
ric [2] is used to evaluate the localization performance.

Again, it is important to highlight that most concurrent

works [4, 7, 9, 10, 14] strayed away from reporting these

results due to the ambiguity in pixel-level ground truths in

images containing a logical anomaly. Some such cases are

depicted in Figure 9. The localization results on MVTec

LOCO are given in Table 3. SALAD achieves the second-

highest result with an AUSPRO of 68.7%.
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Figure 3. Qualitative comparison of the pseudo-labels Cpscudo produced by 5 different feature extractors: ResNetS0 [6], ResNet50 DINO [3],
SAM [8] and ViT DINO [3]. In the bottom row, the original image I is shown. Most methods do not face class mismatches and loss of detail
except for ResNet50 DINO and SAM (e.g. Columns 7 and 8).
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Figure 4. Qualitative comparison of the composition maps C' produced by 5 different feature extractors: ResNet50 [6], ResNet50 DINO [3],
SAM [8] and ViT DINO [3]. In the bottom row, the original image I is shown. While ViT DINO and ViT DINOv2 can generalise effectively,
other methods face problems (e.g. Columns 7 and 8).



Figure 5. Qualitative comparison of the feature clusters Cyeq+ produced by different numbers of clusters K (from 4 to 8). In the bottom row,
the original image I is shown.

Figure 6. Qualitative comparison of the pseudo-labels Cpseudo produced by different numbers of clusters K (from 4 to 8).

Branch Breakfast box Juice bottle Pushpins Screw bag  Splicing conn.  Average
Only Appearance Branch 85.7 96.9 96.8 77.9 96.6 90.8
Only Composition Branch 77.1 87.0 87.7 88.2 86.2 85.4
Only Global Branch 82.2 97.7 91.8 86.3 87.3 89.1

Table 2. Anomaly detection (AUROC) for each branch on MVTec LOCO [2].



Figure 7. Qualitative comparison of the composition maps C' produced by different numbers of clusters K (from 4 to 8).
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Figure 8. Anomaly detection performance on MVTec LOCO under different values for K in the object composition map generation. The
default settings for K is 6.
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Figure 9. Examples of problematic pixel-level ground truths (M) and their corresponding images (I) in MVTec LOCO [2] show issues
with how annotations are done. The ground truths are designed to include all possible solutions, which causes ambiguity. For example, in
Column 7, there are two long screws instead of one long screw and one short screw as expected. The annotation requires marking both long
screws, even though marking one would still be a correct interpretation of the anomaly. This approach unfairly lowers the scores of methods
that label only one screw, even if their prediction makes sense.

Category SimpleNet [11] DRZAEM [16] TransFusion [5] DSR[17] Patchcore [13] SLSG [15] EfficientAD [1] SALAD
Breakfast box 38.8 49.9 53.5 49.9 46.6 65.9 60.4 49.1
Juice bottle 439 80.0 90.1 86.8 41.2 82.0 93.4 81.5
Pushpins 27.2 49.3 51.9 59.1 31.4 74.4 62.3 73.5
Screw bag 66.0 49.0 39.3 37.9 48.1 47.2 64.4 58.4
Splicing connectors 36.9 67.3 67.0 58.6 31.3 66.9 73.3 81.2
Average 36.3 59.1 60.4 58.5 39.7 67.3 69.4 68.7

Table 3. Anomaly localization (AUsSPRO) on MVTec LOCO [2].
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Figure 10. Qualitative comparison of the anomaly segmentation masks produced by SALAD and three other state-of-the-art methods
on MVTec LOCO. In the first row, the image is shown. In the next four rows, the anomaly segmentations produced by DRAM [16],
TransFusion [5], EfficientAD [1] and SALAD are depicted, and in the last row, the ground truth mask is shown. For SALAD, we visualized
the sum of A, and A..



Figure 11. Qualitative comparison of the anomaly segmentation masks produced by SALAD and three other state-of-the-art methods on
MVTec AD. In the first row, the image is shown. In the next four rows, the anomaly maps produced by DRZAM [16], TransFusion [5],
EfficientAD [1] and SALAD are depicted, and in the last row, the ground truth mask is shown.
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