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Figure 1. Example histograms of R, G, and B channels for RAW,
sRGB, and RAM outputs. The top row shows results for ROD-
Day dataset (24-bit), the middle for LOD-Normal (14-bit), and the
bottom row shows results for NOD-Nikon dataset (14-bit). The
RAW and sRGB data are divided by the maximum pixel value for
visualization. The RAM pre-processing method produces a distri-
bution resembling a normal distribution, centered around zero.

A. Distribution Analysis

In Fig. 1, we present the histograms of three data types:
RAW sensor data, sRGB, and the output of our pre-
processing method on multiple datasets. Observing these
distributions, we note that RAW data tends to cluster near
zero, making it less effective for DNN-based learning and
limiting the ability of the network to extract meaningful fea-
tures [8, 9]. sRGB data provides a distribution that is bet-
ter suited for DNN input, as the ISP processing stretches
the histogram and redistributes pixel intensities across the
available range by enhancing the darker pixels and increas-
ing global contrast. However, this processing often leads
to information loss and reduced dynamic range. An exam-
ple of this information loss can be seen in the histograms
(column b of Fig. 1), where pixel values cluster near satu-
ration, leading to clipping. On the other hand, we observed
that the pixel distribution produced by RAM resembles a
normal distribution, centered around zero—a behavior that
has been discussed and shown experimentally [1, 3, 5, 7]
to better support the ability of the network to learn and
converge efficiently during training. This behavior arises
as a byproduct of the complex, learned transformation per-
formed by RAM, which go beyond simple normalization
methods, such as scaling and shifting.

Table 1. Experimental results comparing RAM applied to RAW
images vs RAM applied to sRGB images.

Method LOD-Dark LOD-Normal
mAP mAP50 mAP mAP50

RAW 28.5 50.8 32.7 53.8
sRGB 28.7 51.2 34.5 57.0

RAM (sRGB) 32.9 56.0 37.9 60.4
RAM (RAW) 34.9 57.6 40.1 61.4

B. Experimental Setup
We use the following settings for training and evaluation
in our experiments presented in Section 4: Faster R-CNN
is trained with SGD [6] (lr=0.02, momentum=0.9, weight
decay=1e − 4), using a multi-step learning rate scheduler
with decay at epochs 29, 49, and 79, for a total of 100
epochs. DINO is trained with AdamW [4] (lr=2e−4, weight
decay=1e−4) and a multi-step learning rate scheduler with
decay at epochs 27 and 33, for 50 epochs. Data augmenta-
tion included random resizing and horizontal flipping. For
RAM, inputs are downsampled to 256×256 before the RPE
module, and RPD params outputs are applied to the original
input images. We use mean-std normalization, calculated
on the dataset, for both RAW and sRGB experiments. Per-
formance is evaluated using mean average precision (mAP)
across thresholds 0.5:0.95 and 0.5.

C. Additional Evaluations
C.1. RAM: RAW vs RGB
RAM is designed as a RAW-specific pre-processing module
that optimizes ISP functions for object detection by lever-
aging the rich, unprocessed information available in RAW
images. However, one might question whether RAM’s ef-
fectiveness is inherently tied to RAW data or if similar im-
provements could be achieved by applying it to standard
RGB images. We believe the strength of our approach
lies in its ability to learn and adapt ISP operations directly
from unprocessed sensor data. While sRGB images have
already undergone fixed ISP processing, RAW data pre-
serves the complete sensor information, allowing RAM to
discover optimal processing parameters specifically for de-
tection tasks.

To validate this intuition empirically, we compare the
performance of RAM when applied to RAW images versus
sRGB images. The results on Tab. 1 show that while apply-
ing RAM to sRGB can improve the image for detection, it
does not perform as well as RAM on RAW. This emphasizes



Table 2. Comparison of sRGB and RAM performance across dif-
ferent YOLOX model sizes (Small, Medium, and Large) on the
ROD-Night dataset.

Method Data Type mAP mAP50

YOLOX-S
RAW 46.7 72.3
sRGB 50.3 76.4
RAM 54.8 80.7

YOLOX-M
RAW 50.9 76.4
sRGB 54.8 79.7
RAM 58.0 83.0

YOLOX-L
RAW 53.3 78.0
sRGB 56.9 81.9
RAM 59.8 84.0

Table 3. Comparison of training each dataset separately vs training
one model on all datasets. Results are reported using mAP.

Training Approach PASCALRAW NOD-Nikon NOD-Sony LOD-Dark
Single dataset 67.7 31.9 32.8 48.0
All datasets 69.6 32.8 35.8 48.2

that RAM is specifically tailored to utilize the full potential
of RAW data, making it an effective pre-processing solution
for RAW-based object detection.

C.2. Scalability Across Different Detector Sizes
To test the scalability of our approach, we evaluate its
performance on different YOLOX detector sizes (Small,
Medium, and Large) trained from scratch on the ROD-
Night dataset. Each model size corresponds to a different
number of parameters, allowing us to examine how RAM
adapts across varying computational capacities.

The results in Tab. 2 show that RAM consistently outper-
forms sRGB across all model sizes, demonstrating its adapt-
ability and effectiveness regardless of the detector’s scale.
Notably, the performance gains achieved by integrating
RAM surpass those obtained by simply increasing the de-
tector size when using sRGB. For instance, YOLOX-S with
RAM achieves higher mAP50 than YOLOX-M with sRGB,
and similarly, YOLOX-M with RAM outperforms YOLOX-
L with sRGB. This highlights the significant impact of op-
timizing RAW pre-processing, confirming that our efficient
approach improves detection performance more effectively
than just increasing the model size.

C.3. Generalization Across Datasets
To demonstrate RAM’s ability to generalize across diverse
data, we compare training a separate model on each dataset
with training a single model jointly on all four datasets,
which vary significantly in dynamic range and lighting con-
ditions. This setting is especially challenging for RAW
data: unlike RGB datasets that typically share a standard-
ized 8-bit dynamic range, RAW datasets differ widely in

their dynamic ranges and sensor-specific properties. Nev-
ertheless, as shown in Tab. 3, RAM adapts effectively by
generating optimal parameters for each input image, en-
abling it to handle such variability. It not only performs
well across individual datasets, but also benefits from the
additional data, despite distribution differences, achieving
improved performances overall.

D. RAM vs RAM-T

D.1. Model Configuration
Tab. 5 details the layer configurations for both RAM and
RAM-T (Tiny) architectures, with primary differences ly-
ing in the number of channels and kernel sizes, which ulti-
mately affect the overall FLOPs and parameter count. The
RPEncoder performs the main processing by transforming
the input image into a compact feature vector, which is then
fed into each RPDecoder. The RPDecoder is lightweight,
making it efficient to add additional ISP functions to the
pipeline without a significant computational cost. The Fea-
ture Fusion module employs a reverse-hourglass design,
where the input and output channels are the smallest, while
the middle layers are the largest. This structure enables ef-
ficient fusion of all processed inputs, capturing the most es-
sential features needed for high-quality object detection.

D.2. Quantitative Evaluation
The comparison between RAM and RAM-T across multi-
ple RAW object detection datasets shown in Tab. 4 demon-
strates the effectiveness of RAM-T in achieving near-
identical performance to the full RAM module. While
RAM shows superior performance on most datasets, RAM-
T remains a highly competitive alternative, providing a
nearly equivalent detection quality with fewer parameters
and reduced memory usage as shown in section 4.4. This
makes RAM-T especially suitable for scenarios where com-
putational resources and memory are more constrained,
without a significant sacrifice in accuracy.

E. Additional Visualizations

In this section, we present additional visualizations com-
paring the detection results of models trained on RAW,
sRGB and our method, RAM. The images in these visu-
alizations represent different conditions synthesized on the
ROD-Night dataset.

The visualizations, shown in Fig. 2, illustrate the ef-
fects of synthesized weather conditions—rain, snow, and
fog—on object detection performance, corresponding to the
experiments discussed in section 4.5.2. The images in the
first row demonstrate the impact of rain on detection, where
the RAW and sRGB models struggle to detect small cars in
rainy conditions, while RAM successfully identifies these



Table 4. Comparison between RAM and RAM-T across different RAW object detection datasets. Results are reported using mean Average
Precision (mAP) and mAP at 50% IoU (mAP50).

Method ROD-Day ROD-Night NOD-Nikon NOD-Sony LOD-Dark LOD-Normal PASCALRAW
mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50

RAM 28.3 45.1 44.5 69.0 31.0 56.3 32.4 59.1 34.9 57.6 40.1 61.6 66.4 92.3
RAM-T 27.9 44.4 44.2 68.5 30.7 55.8 32.2 58.1 35.8 58.4 40.1 61.4 66.3 92.2

Table 5. Layer configurations for RAM and RAM-T. ConvBlock includes: Conv2d, BatchNorm2d and LeakyReLU layers.

Module Layer Type RAM RAM-T

RPEncoder
1 ConvBlock 3→16 channels, 7x7 kernel 3→16 channels, 3x3 kernel
2 MaxPool 2x2 kernel 2x2 kernel
3 ConvBlock 16→32 channels, 5x5 kernel 16→32 channels, 3x3 kernel
4 MaxPool 2x2 kernel 2x2 kernel
5 ConvBlock 32→128 channels, 3x3 kernel 32→64 channels, 3x3 kernel
6 MaxPool 2x2 kernel 2x2 kernel
7 AdaptiveAvgPool2d 1x1 kernel 1x1 kernel

RPDecoder 1 Linear 128 units 64 units
2 LeakyReLU - -
3 Linear 128 units 64 units

Feature Fusion 1 ConvBlock 12→16 channels, 3x3 kernel 12→16 channels, 3x3 kernel
2 ConvBlock 16→64 channels, 3x3 kernel 16→32 channels, 3x3 kernel
3 ConvBlock 64→16 channels, 3x3 kernel 32→16 channels, 3x3 kernel
4 Conv2D 16→3 channels, 1x1 kernel 16→3 channels, 1x1 kernel

objects. In the second row, heavy snow in the night im-
ages hides the cyclists on the left, making them nearly un-
detectable even to the human eye. Remarkably, RAM’s out-
put shows an ability to “remove” most of the snow from the
image, despite not being explicitly trained to do so, allow-
ing it to accurately capture the cyclists features. In the third
row, fog covers the entire scene unevenly, making detec-
tion challenging for the model. Although RAW and sRGB
manage to detect some objects, their performance falls short
of RAM, which generates a more consistent image less im-
pacted by the fog.

Fig. 3 presents detection results on noisy synthetic im-
ages and their denoised versions, as discussed in section
4.5.1. The presence of noise makes it challenging to detect
occluded pedestrians and cyclists, including for RAM, as
its output remains noisy without any specialized denoising
component. The denoised images, produced by the state-of-
the-art LED model [2], do not perfectly restore the original
images and may introduce artifacts, which in some cases
lead to false positives. In comparison, the best results ap-
pear in the bottom right image, where RAM, trained on de-
noised data, remains unaffected by any potential artifacts
from the denoising process.

In conclusion, these visualizations emphasize the robust-
ness of RAM in extreme conditions. Furthermore, they il-
lustrate how RAM interprets images, often disregarding un-
necessary or distracting features to focus on critical object

features. Notably, we demonstrate these results on driving
scenes, where accurate object identification in challenging
conditions is essential and can be life-saving.

F. Limitations

While our proposed method demonstrates strong perfor-
mance across a variety of datasets, it relies on a specific set
of commonly used ISP functions tailored to these datasets.
We are aware that these functions may not be suitable for all
datasets, and other ISP functions might be necessary for dif-
ferent cases. However, the flexible design of RAM allows
for easy addition or removal of ISP functions as needed.

Another challenge of working with RAW data is its
sensor-specific nature. Unlike sRGB, where the ISP nor-
malizes images to a standard 8-bit range, RAW images vary
significantly in dynamic range, distribution, and character-
istics across different sensors. This variability makes it
more difficult to generalize a model trained on one sensor’s
data to another compared to sRGB, where cross-dataset
generalization is more straightforward. However, as shown
in Sec. C.3, this limitation can be addressed by training a
robust model on diverse sensor data, enabling better adapt-
ability across different hardware.
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Figure 2. Object detection results in challenging weather conditions—rain, snow, and fog—synthesized on the ROD-Night dataset. The
columns, in left-to-right order, show RAW, sRGB, RAM (our method), and the ground truth (GT).
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Figure 3. Qualitative comparison of images across RAW, sRGB, and RAM representations. The top row shows the ground truth (GT)
image. The second row presents results on the noisy images, while the third row shows results on the denoised images.
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