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Abstract

In this supplementary material, we provide more implemen-
tation details, experiment results with analysis, and further
discussion on the limitations and future work.

1. More implementation details

The detailed parameter setting in Gaussian attributes
estimation network [15]. During the joint depth and 6D
pose training in stage 1, we predict the 3D Gaussian pa-
rameters alongside the 2D depth map. Since the Gaussian
parameters are well-arranged in the 2D image plane prior
to unprojection, we maintain equal scaling across all three
dimensions of each 3D Gaussian and constrain the maxi-
mum scale to 0.02. Given that the scale s is uniform across
all dimensions, we set the rotation matrix R to the identity
matrix. Additionally, we assign an opacity value of 1 to
each 3D Gaussian, ensuring that every 2D depth value cor-
responds to a valid point in 3D space. We do not predict the
color defined by SH coefficients ¢, while we directly use the
source RGB image as the color map the same as in [18].
The detailed parameter setting in voxel grid splat-
ting rendering for semantic rendering. For semantic ren-
dering, we chose a fixed scale for each grid vertex to en-
sure a well-arranged structure that accurately models the
3D space. If we use a learnable scale, it may lead to a
situation where the scale is small but the opacity is large,
which may not be captured in the rendered depth map and
semantic map but could still affect the 3D occupancy re-
sult. Therefore, using a fixed scale is simple and sufficient
for optimization, as demonstrated in the results presented
in the main paper (Table 5) that the performance is close
to the learnable scale. Since the scale s € Ri are iden-
tical for both three dimensions, we do not need to predict
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Figure 1. Overlap mask generation on DDAD dataset.
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the rotation » € R* and set it with the identical matrix is
sufficient. Similar to the OccNeRF [16], we render the 2D
feature map for the semantic regression, while we leverage
the 3D Gaussian splatting rendering and OccNeRF uses vol-
ume rendering.

The detailed overlap mask generation. In Figure 1, we
provide additional visualizations of the overlap mask gen-
eration process on the DDAD dataset [4]. To ensure accu-
racy, we exclude self-occluded regions, such as parts of the
vehicle body, which are highlighted by the red rectangle.
Additionally, we observe that the generated mask contains
noise, as indicated by the yellow rectangle. To address this,
we apply an erosion operation using the OpenCV library [1]
with a threshold of 20.

The detailed parameter setting in training. We follow
the training setting as OccNeRF [16], the resolution of input
images and rendered depth maps are set as 384x640 and
180320 respectively. All experiments are conducted on 8
NVIDIA A100 (40 GB).
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Figure 2. One-stage training analysis. This is the visualization
of the overlap mask and the rendered depth map with one-stage
training.

The detailed training strategy of the self-supervised
pretraining setting. We first do the self-supervised train-
ing with 12 epochs with the learned pose from stage 1 and
the 2D pseudo semantic label, which does not require the
3D occupancy label. Then, we finetune the model with 12
epochs with the 3D occupancy label. We add the RayloU
metric [11] in Table 4 for a comprehensive comparison.

The detailed definition of depth map metric. Follow-
ing the depth estimation task [14], we report the depth map
evaluation with the following metrics,
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where M is the valid pixel, d is the ground truth depth and
d* is the predicted depth.

2. More experiment results and analysis

Why we need two-stage training. We made extensive ef-
forts to develop one-stage training that directly applies the
cross-view loss to the rendered depth map but were unsuc-
cessful. As suggested in Figure 2, the cross-view supervi-
sion signals are effective only in overlapping regions. The
rendered depth map learned from 3D CNN has lower gener-
alization ability in non-overlap regions compared with the
decoder depth learned by the 2D CNN, which led to local
minima.

mloU metric. Due to the limited space in the main pa-
per, the full table of mloU results is presented in Table 2 for
reference.

RaylIoU metric. In addition to the mloU metric for 3D
occupancy estimation, we also evaluate our method with a
novel metric, RayloU, introduced by the recent work [11].
The RayloU is a ray-based evaluation metric that resolves
the inconsistency penalty along the depth axis introduced in
the traditional voxel-level mloU criteria. As shown in Ta-
ble 3, our approach also outperforms OccNeRF [16] in this
metric as well. It’s important to note that the FPS is cal-
culated excluding rendering time. Since GaussianOcc and
OccNeRF utilize the same network architecture, they share
the same inference time when the rendering process is not
taken into account.

More visualization. We provide more visual-
ization for nuScenes dataset in Figure 3. Please
check the videos for sequence visualization in
https://github.com/GANWANSHUI/GaussianOcc.git.

More analysis on 3D occupancy and depth map result
on different supervision types.
3D occupancy analysis: In Figure 4, we present visual-
izations of different supervision types. These visualizations
highlight key differences in the results for the invisible re-
gions (marked with red rectangles) and the rendered depth
quality (marked with green rectangles).

Experiments (1) and (2) involve supervision using
ground truth (GT) occupancy labels. Specifically:

Experiment (1) is trained without the visible mask pro-
vided by Occ3D-nuScenes [13], which defines the visibility
of the occupancy labels. Without this mask, the invisible re-
gions are treated as empty, and the loss function is applied
to these regions as well. Experiment (2), on the other hand,
excludes the loss computation in invisible regions. From the
results, we observe that in Experiment (1), the model tends
to predict empty values for invisible regions due to empty
loss penalty. In contrast, Experiment (2), by ignoring the
loss in invisible areas, shows more non-empty predictions
in these regions.

Self-supervised experiments (3) and (4) rely on render-
ing techniques, which inherently cannot optimize predic-
tions in invisible regions. This limitation leads to non-
empty predictions in the red-highlighted areas. Notably, Ex-
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Render resolution | Render time (s) with different voxel resolutions (Gaussians number)
180 %320 16 x200 x 200 | 24 x320 x 320 32 x512 x 512
VR ~ 0.50 ~0.85 ~ 1.52
SR ~ 0.06 ~0.17 ~ 0.44

Table 1. Comparison of rendering efficiency under different Gaus-
sians number between volume rendering (VR) [16] and splatting
rendering (SR, Ours).

periment (4) frequently predicts invisible regions as related
to foreground categories, as shown in the dark rectangles.
Conversely, Experiment (3) demonstrates a consistent ten-
dency to classify invisible regions as man-made structures,
likely because the surrounding environment predominantly
consists of man-made elements.

Render depth map analysis: In Tables 2 and 6 of main
paper, we observe an interesting phenomenon that the se-
mantic information is helpful for the depth estimation with
our GaussianOcc whereas it worsens the result in OccN-
eRF. In Figure 4, we visualize the depth map and highlight
with green rectangles that our Gaussian splatting rendering
produces higher-quality depth predictions compared to vol-
ume rendering. This should be concluded to the biased sam-
pling strategy of OccNeRF, where only 25% of the sample
points are used for faster semantic map rendering compared
to depth map rendering. Here is the piece of the code in
OccNeRF [16]. In contrast, our proposed Gaussian splat-
ting method, which renders directly from the voxel vertices,
eliminates this issue. At last, since Experiments (1) and (2)
do not involve rendering-based training, they fail to produce
reasonable depth predictions.

Gaussians number and its related render time: (1) In
stage 1, Gaussians number depends on the depth map res-
olution from the 2D decoder, where each pixel is a Gaus-
sian primitive after unprojection. We use the depth map
resolution in 224 x 352, resulting in 78,848 Gaussian prim-
itives in one image. In stage 2, Gaussians number de-
pends on the voxel resolution, where each voxel grid is
a Gaussian primitive. In Table 7 of the main paper, we
follow the voxel resolution the same as OccNeRF [52] in
24 x 300 x 300, resulting in 2,160,000 Gaussian primitives.
(2) We revealed the rendering time under different render
image resolutions compared with volume rendering in Ta-
ble 7 of the main paper. We conducted the extra experiment
for render time comparison under the same render image
resolution (180 x 320) but with different Gaussians num-
ber (voxel resolutions) as shown in Table 1. From Table 7
of the main paper and Table I, we observe: (1) The ren-
der time of splatting rendering (SR) is mainly affected by
the Gaussians number, not the render image resolution. (2)
SR is 3-8 times faster than volume rendering (VR) across
different voxel settings.

Bonus of the fully self-supervised setting: The fully self-
supervised setting of our method could be a general pre-

training solution for supervised learning. After the self-
supervised training on the DDAD and nuScenes datasets,
we further finetune the model with the 3D occupancy label
from Occ3D [13]. As shown in Table 4, experiments with
self-supervised pretraining outperform the baseline. In par-
ticular, we find that pretraining on nuScenes is better than
the DDAD dataset, which may own to the domain gap fac-
tors, such as differences in the scenarios (RGB images) and
sensor configurations (camera extrinsics).

3. Limitation and future work

The proposed method achieves reasonable predictions in
most scenes; however, we observe that some cases still
present challenges, as shown in Figure 5. Specifically, in the
DDAD dataset, incorrect predictions occur in the back cam-
era in certain situations as marked with the red circle, where
the drivable surface is mistakenly projected into the car due
to extensive self-occlusion. Notably, this issue is absent in
the nuScenes dataset, which has less self-occlusion. We be-
lieve that this problem could be mitigated with better 2D se-
mantic maps for supervision, which warrants further inves-
tigation. The proposed method is for the surround view set-
ting which is not suitable for the monocular images. Addi-
tionally, in stage 1, we leverage the spatial cross-view con-
straint for scale-aware training through the proposed Gaus-
sian splatting method. In the future, we aim to explore its
potential benefits for temporal view synthesis as well.
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Table 2. 3D occupancy prediction performance on the Occ3D-nuScenes dataset in mIoU metric. Since ‘other’ and ‘other flat’ classes
are the invalid prompts for open-vocabulary models, we also calculate ‘mIoU*’ as the result ignoring the classes that do not consider these
two classes during evaluation, while ‘mloU’ is the original result. GT Occ. refers to the use of the ground truth occupancy label for
supervision. GT Pose is the ground truth pose from the sensor for self-supervised geometry learning.
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Table 3. 3D Occupancy prediction performance on the Occ3D-nuScenes dataset in RayloU metric. GT Occ. means using the ground
truth occupancy label for the supervision. GT Pose is the ground truth pose from the sensor for self-supervised geometry learning. “8f”
and “16f” mean fusing temporal information from 8 or 16 frames. mloU is the mean Intersection over Union for all categories. FPS means

frame per second for each method, which is measured on a Tesla A100 GPU.
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Figure 3. The visualization of the render depth map and 3D occupancy prediction on nuScenes dataset.
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(1) Supervised learning with GT Occ. and without the visible mask

(2) Supervised learning with GT Occ. and with the visible mask

(3) Self-supervised learning with Gaussian splatting rendering (Ours)

(4) Self-supervised learning with Volume rendering (OccNeRF)

Figure 4. The visualization of the different supervision types (1-4) comparison on nuScenes dataset.
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nuScenes 38.45 29.9 239 304 355

Self-supervised pretrain

Table 4. The study on SimpleOcc [3] with fully self-supervised pretrain. The baseline is directly training the model with 3D occupancy
label. The self-supervised pretraining is conducted on DDAD and nuScenes and then finetuned the model with 3D occupancy label. The
number with bold typeface means the best.
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Figure 5. Some wrong predictions due to the large self-occlusion on DDAD dataset.
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