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Table 1. Additional experiments.

Experiment Model RMSE↓ δ1↑

Sc
an

N
et

++ Self-supervised (ours) UniDepth 0.244 0.766
Supervised (ours) UniDepth 0.242 0.769

Fisheye space UniDepth 0.280 0.755
Same token added UniDepth 0.290 0.752

K
IT

T
I-

36
0 Self-supervised (ours) UniDepth 2.040 0.664

Supervised (ours) UniDepth 1.994 0.651

Fisheye space UniDepth 2.110 0.618
Same token added UniDepth 2.062 0.631

A. Additional Experiments

To further validate our claims and design choices, we evalu-
ated the performance of some other possible designs, which
can be seen in Tab. 1.
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Figure 1. Visualization of lossy training objective.

Fisheye Frame Loss. In the main paper, we claimed that
computing loss in the fisheye reference frame would perform
worse because we would need to transform the perspective
output, which would give us a lossy training objective. We
have validated that claim with another experiment in the
table. Furthermore, Fig. 1 shows the information loss caused
by distorting to the equirectuangular space, which is used by
some baseline methods. In this example with an image from
KITTI-360, there is a 17.23% loss in the image pixels.

Same Token Added. In addition to the "Layer-wise" and
"Single Token" approaches for adding our calibration tokens
that we discussed in the main paper, we tried taking the same
token, but adding and removing it after each transformer
block, so it remains unchanged for each transformer block.
We found that this approach still does not outperform the
"Layer-wise" approach.
Supervised Loss. Because our loss is self-supervised (using
output from a pretrained model as the training objective),
we also evaluate the performance of our method when train-
ing with perspective ground truth instead of the perspective
model output. As expected, there is a slight performance
increase. However, it would be more cost-effective to use
the self-supervised approach because the improvement is
limited, especially in the indoor setting. This further vali-
dates the robustness of the baseline foundation model for
perspective images.
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Figure 2. Validation on LogL1 loss. We evaluate the effectiveness
of our LogL1 loss by comparing a single-layer token baseline with
an additional LogL1 loss. Incorporating LogL1 loss helps model
to mitigate artifacts in the highlighted border regions of fisheye
images, leading to improved visual consistency.

Additional Qualitative Results. We further demonstrate
our contribution with the 3D reconstruction results as shown
in Fig. 3. This result provides evidence of our contribution
toward foundational model latent embeddings to be aligned
to fisheye images with our fully self-supervised training.
Additionally, we provide qualitative results to validate our
LogL1 loss. As can be seen with the Fig. 2, the logL1 loss
helps the model mitigate the impact of artifacts caused by
severe distortions, leading to more stable improvements on
fisheye images, as reflected in the depth map and error map
results. Fig. 4 and Fig. 5 visualize the depth estimation
comparison with and without the calibration token (C.T.) on
the ScanNet++ and KITTI-360 datasets, respectively.
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Figure 3. 3D reconstruction result of UniDepth predictions on ScanNet++ dataset.

B. Additional Details
B.1. Foundational Depth Estimation Models
MiDAS, DepthAnything-V1(ViT-L). Following the
pipeline of [31, 62], these models utilizes a Vision Trans-
former Large encoder and a specialized decoder head for
single-view depth estimation. Its training covers a massive
corpus of perspective images drawn from both indoor and
outdoor domains, aiming at robust zero-shot performance.
Despite strong generalization within pinhole-camera distri-
butions, it lacks dedicated mechanisms for counteracting
severe lens distortions (e.g., fisheye or panoramic).
UniDepth-V2(ViT-S). UniDepth-V2 [30] leverages a Vi-
sion Transformer Small backbone, paired with a camera
self-prompting routine to address moderate discrepancies
in intrinsic parameters. However, when confronted with ex-
treme distortions typical of ultra-wide or fisheye lenses, it
is insufficient to recover geometry reliably. In both cases,
we demonstrate how a small set of learnable calibration to-
kens (see main paper) can bridge the gap from perspective
to fisheye images without retraining the full models.

B.2. Datasets
We provide further details on the datasets used for both
training and testing.

Training Datasets: NYU Depth V2 [36] (“NYUv2”)
consists of 464 diverse indoor scenes (e.g., living rooms,
offices). It contains about 400,000 aligned RGB–depth pairs
at 640×480 resolution. Following standard practice, approx-
imately 1,500 depth points are chosen in each map via the
Harris corner detector [14]. NYUv2 is a common benchmark
for indoor depth tasks and serves here as one of our primary
training sets.
IRS [45] compiles a large number of synthetic indoor en-
vironments, from small apartments to commercial interi-
ors—each scene offering ground-truth depth rendered at
resolutions comparable to 640×480. Its scale (up to 103,316
frames) and variety of virtual layouts supplement real data.
VOID [51] (Visual Odometry with Inertial and Depth) fea-

tures about 58,000 frames taken in hallways, classrooms,
and shared spaces, each accompanied by a sparse depth map
at roughly 0.5% density (≈1,500 points).
Hypersim [35] is a photo-realistic synthetic dataset offering
about 77,400 RGB–depth pairs. These scenes incorporate
meticulously rendered geometry and lighting across vari-
ous architectural styles (e.g., residential, museum-like struc-
tures). Hypersim’s controlled yet visually realistic design
helps our model see a wide spectrum of interior layouts even
before encountering real-world test sets.
Waymo Open Dataset [39] contributes ∼230,000 camera–
LiDAR frames across urban and suburban roads. Though
heavily used for self-driving applications (e.g., detection,
tracking), we leverage it here to extend our token training
beyond the pure indoor scenario. The inclusion of Waymo
frames exposes our method to outdoor scenes with larger
view ranges and more complex lighting.

Testing Datasets: Our proposed approach is primarily
evaluated on two real-world datasets that each incorporate
fisheye or wide-FOV imaging. ScanNet++ [64] is an ex-
tended collection of indoor RGB-D sequences, building on
the popular ScanNet dataset but augmented with additional
scenes and fisheye captures. We use the fisheye depth esti-
mation ground truth to verify how our framework handles
substantial lens distortion indoors.
KITTI-360 [24] is an outdoor dataset focusing on large-
scale mapping and autonomous driving. It contains 360◦

fisheye cameras and high-grade LiDAR depth. Scenes en-
compass suburban roads, semi-rural stretches, and detailed
3D annotations. Testing on KITTI-360 lets us measure the
ability of our approach to generalize to wide-FOV imagery
in challenging real-world driving contexts.

B.3. Implementations
All experiments used the same training hyperparameters:
Adam optimizer with learning rate of 10−4 and β1 =
0.9, β2 = 0.999. For random fisheye distortion synthesis,
we leveraged the polynomial distortion model introduced by
Kannala & Brandt [16], using four distortion parameters



(i.e., Nk = 4) within the range of [−1.0,−0.01].

B.4. Evaluation Metrics
For the evaluation, we used metrics proposed by Eigen et
al.[7]. Since our focus is on adapting monocular depth es-
timation to different visual modalities, we measure relative
depth estimation performance to mitigate the gap introduced
by fisheye images. This is crucial, as foundation models
often suffer from a loss of general performance in such cases.
Tab. 2 provides detailed equations used for evaluation. The
root mean squared error (RMSE) measures deviation in the
linear depth space. We further report a threshold-based ac-
curacy, δ1, which represents the percentage of pixels whose
predicted depth is within a tight bound of the ground-truth
depth.

Metric Definition
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Table 2. Error metrics for depth estimation. These evaluation
metrics compute the error between predicted depth values d̂(x) and
ground truth depth values d(x).

C. Discussion
Spatial applications are typically deployed on platforms (e.g.,
robots, autonomous vehicles, extended reality headsets) with
multi-camera systems. Naturally, data collection is done on
a specific platform that may differ from those used during
deployment. This introduces a domain or covariate shift
between the training and testing distributions. The focus
of this paper is on the covariate shift introduced by fish-
eye cameras, which are common to many spatial platforms.
While we demonstrate our method on monocular depth es-
timation [9–11, 22, 23, 42, 43, 46, 50, 56, 66–68, 73], it
is just one of many perception tasks that are affected by
this covariate shift: We see further applications in opti-
cal flow [18–21, 38, 40, 70, 71], semantic segmentation
[4, 13, 17, 48, 49, 52, 58, 72], image restoration [1, 65, 69]
and stereo [2, 12, 44, 55, 60]. Further, many perception tasks
follow the convention of projecting different sensor modali-
ties onto the image reference frame for fusion. We envision
our method to be applicable towards perception tasks on
multi-sensor platforms, including 3D objection [57, 59] with
camera and LiDAR and 3D reconstruction with camera and
LiDAR [3, 6, 8, 15, 25, 26, 28, 29, 47, 51, 53, 54, 63] or radar
[33, 37]. Finally, we see a connection between our method

and continual learning [5, 27, 32, 34, 41, 61] as our method
aims extend to models to different cameras, e.g. perspective
to fisheye, instead of 3D scenes while maintaining previously
learned information, e.g., backward-compatibility.
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Figure 4. Additional comparison results on ScanNet++ dataset.
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Figure 5. Additional comparison results on KITTI-360 dataset.



References
[1] Yunhao Ba, Howard Zhang, Ethan Yang, Akira Suzuki,

Arnold Pfahnl, Chethan Chinder Chandrappa, Celso M de
Melo, Suya You, Stefano Soatto, Alex Wong, and Achuta
Kadambi. Not just streaks: Towards ground truth for sin-
gle image deraining. In European Conference on Computer
Vision, pages 723–740. Springer, 2022. 3

[2] Zachary Berger, Parth Agrawal, Tian Yu Liu, Stefano Soatto,
and Alex Wong. Stereoscopic universal perturbations across
different architectures and datasets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15180–15190, 2022. 3

[3] Marvin Chancán, Alex Wong, and Ian Abraham. 3d
reprojection-driven robot navigation improves depth sens-
ing. In 2025 International Conference on Advanced Robotics
and Mechatronics (ICARM). IEEE, 2025. 3

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2017. 3

[5] Xien Chen, Suchisrit Gangopadhyay, Michael Chu, Patrick
Rim, Hyoungseob Park, and Alex Wong. Uncle: Unsuper-
vised continual learning of depth completion. arXiv preprint
arXiv:2410.18074, 2024. 3

[6] Younjoon Chung, Hyoungseob Park, Patrick Rim, Xiaoran
Zhang, Jihe He, Ziyao Zeng, Safa Cicek, Byung-Woo Hong,
James S. Duncan, and Alex Wong. Eta: Energy-based test-
time adaptation for depth completion. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
2025. 3

[7] David Eigen, Christian Puhrsch, and Rob Fergus. Depth
map prediction from a single image using a multi-scale deep
network. Advances in neural information processing systems,
27, 2014. 3

[8] Vadim Ezhov, Hyoungseob Park, Zhaoyang Zhang, Rishi
Upadhyay, Howard Zhang, Chethan Chinder Chandrappa,
Achuta Kadambi, Yunhao Ba, Julie Dorsey, and Alex Wong.
All-day depth completion. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
2024. 3

[9] Xiaohan Fei, Alex Wong, and Stefano Soatto. Geo-supervised
visual depth prediction. IEEE Robotics and Automation Let-
ters, 4(2):1661–1668, 2019. 3

[10] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow.
Unsupervised monocular depth estimation with left-right con-
sistency. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 270–279, 2017.

[11] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 3828–3838,
2019. 3

[12] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong
Tan, and Ping Tan. Cascade cost volume for high-resolution
multi-view stereo and stereo matching. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2495–2504, 2020. 3

[13] Mingqi Han, Eric A Bushong, Mayuko Segawa, Alexandre
Tiard, Alex Wong, Morgan R Brady, Milica Momcilovic,
Dane M Wolf, Ralph Zhang, Anton Petcherski, et al. Spatial
mapping of mitochondrial networks and bioenergetics in lung
cancer. Nature, 615(7953):712–719, 2023. 3

[14] Christopher G. Harris and M. J. Stephens. A combined corner
and edge detector. In Alvey Vision Conference, 1988. 2

[15] Mu Hu, Shuling Wang, Bin Li, Shiyu Ning, Li Fan, and Xiao-
jin Gong. Penet: Towards precise and efficient image guided
depth completion. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 13656–13662. IEEE,
2021. 3

[16] Juho Kannala and Sami Brandt. A generic camera calibration
method for fish-eye lenses. In Proceedings of the 17th In-
ternational Conference on Pattern Recognition, 2004. ICPR
2004., pages 10–13. IEEE, 2004. 2

[17] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, Piotr Dollar, and Ross
Girshick. Segment anything. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 4015–
4026, 2023. 3

[18] Dong Lao and Ganesh Sundaramoorthi. Minimum delay
moving object detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
4250–4259, 2017. 3

[19] Dong Lao and Ganesh Sundaramoorthi. Extending layered
models to 3d motion. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 435–451, 2018.

[20] Dong Lao and Ganesh Sundaramoorthi. Minimum delay
object detection from video. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5097–
5106, 2019.

[21] Dong Lao, Congli Wang, Alex Wong, and Stefano Soatto.
Diffeomorphic template registration for atmospheric turbu-
lence mitigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 25107–
25116, 2024. 3

[22] Dong Lao, Yangchao Wu, Tian Yu Liu, Alex Wong, and
Stefano Soatto. Sub-token vit embedding via stochastic reso-
nance transformers. In International Conference on Machine
Learning. PMLR, 2024. 3

[23] Dong Lao, Fengyu Yang, Daniel Wang, Hyoungseob Park,
Samuel Lu, Alex Wong, and Stefano Soatto. On the viability
of monocular depth pre-training for semantic segmentation.
In European Conference on Computer Vision. Springer, 2024.
3

[24] Yinchao Liao, Jinglu Xie, and Andreas Geiger. KITTI-360: a
novel dataset and benchmarks for urban scene understanding
in 2d and 3d. arXiv preprint arXiv:2109.13410, 2021. 2

[25] Yuankai Lin, Tao Cheng, Qi Zhong, Wending Zhou, and Hua
Yang. Dynamic spatial propagation network for depth com-
pletion. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 1638–1646, 2022. 3

[26] Tian Yu Liu, Parth Agrawal, Allison Chen, Byung-Woo Hong,
and Alex Wong. Monitored distillation for positive congruent



depth completion. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part II, pages 35–53. Springer, 2022. 3

[27] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, pages
109–165. Elsevier, 1989. 3

[28] Hyoungseob Park, Anjali Gupta, and Alex Wong. Test-
time adaptation for depth completion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20519–20529, 2024. 3

[29] Jinsun Park, Kyungdon Joo, Zhe Hu, Chi-Kuei Liu, and In
So Kweon. Non-local spatial propagation network for depth
completion. In ECCV, 2020. 3

[30] Luigi Piccinelli, Christos Sakaridis, Yung-Hsu Yang, Mat-
tia Segu, Siyuan Li, Wim Abbeloos, and Luc Van Gool.
Unidepthv2: Universal monocular metric depth estimation
made simpler, 2025. 2

[31] Rene Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards Robust Monoc-
ular Depth Estimation: Mixing Datasets for Zero-Shot Cross-
Dataset Transfer . IEEE Transactions on Pattern Analysis &
Machine Intelligence, 44(03):1623–1637, 2022. 2

[32] Roger Ratcliff. Connectionist models of recognition mem-
ory: constraints imposed by learning and forgetting functions.
Psychological review, 97(2):285, 1990. 3

[33] Patrick Rim, Hyoungseob Park, Vadim Ezhov, Jeffrey Moon,
and Alex Wong. Radar-guided polynomial fitting for metric
depth estimation. arXiv preprint arXiv:2503.17182, 2025. 3

[34] Patrick Rim, Hyoungseob Park, Ziyao Zeng, Younjoon
Chung, and Alex Wong. Protodepth: Unsupervised contin-
ual depth completion with prototypes. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pages
6304–6316, 2025. 3

[35] Michael Roberts, Jason Ramapuram, Anurag Ranjan, Ankit
Kumar, Miguel Bautista, Nicholas Paczan, Richard Webb,
and Joshua M. Susskind. Hypersim: A photorealistic syn-
thetic dataset for holistic indoor scene understanding. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 2

[36] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European Conference on Computer Vision
(ECCV), pages 746–760, 2012. 2

[37] Akash Deep Singh, Yunhao Ba, Ankur Sarker, Howard Zhang,
Achuta Kadambi, Stefano Soatto, Mani Srivastava, and Alex
Wong. Depth estimation from camera image and mmwave
radar point cloud. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9275–9285, 2023. 3

[38] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943,
2018. 3

[39] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Alex
Chouard, Vijay Patnaik, Phil Tsui, Junqing Guo, Yin Zhou,

Yuning Chai, Brian Caine, and et al. Scalability in perception
for autonomous driving: Waymo open dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2446–2454, 2020. 2

[40] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 3

[41] Sebastian Thrun. Is learning the n-th thing any easier than
learning the first? Advances in neural information processing
systems, 8, 1995. 3

[42] Rishi Upadhyay, Howard Zhang, Yunhao Ba, Ethan Yang,
Blake Gella, Sicheng Jiang, Alex Wong, and Achuta Kadambi.
Enhancing diffusion models with 3d perspective geometry
constraints. ACM Transactions on Graphics (TOG), 42(6):
1–15, 2023. 3

[43] Daniel Wang, Patrick Rim, Tian Tian, Alex Wong, and
Ganesh Sundaramoorthi. Ode-gs: Latent odes for dynamic
scene extrapolation with 3d gaussian splatting. arXiv preprint
arXiv:2506.05480, 2025. 3

[44] Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo
Speciale, and Marc Pollefeys. Patchmatchnet: Learned multi-
view patchmatch stereo. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 14194–14203, 2021. 3

[45] Qi Wang, Shuang Zheng, Qi Yan, Fan Deng, Ke Zhao, and
Xiang Chu. IRS: A large naturalistic indoor robotics stereo
dataset to train deep models for disparity and surface nor-
mal estimation. In 2021 IEEE International Conference on
Multimedia and Expo (ICME), pages 1–6, 2021. 2

[46] Alex Wong and Stefano Soatto. Bilateral cyclic constraint
and adaptive regularization for unsupervised monocular depth
prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5644–5653,
2019. 3

[47] Alex Wong and Stefano Soatto. Unsupervised depth comple-
tion with calibrated backprojection layers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 12747–12756, 2021. 3

[48] Alex Wong and Alan L Yuille. One shot learning via com-
positions of meaningful patches. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1197–
1205, 2015. 3

[49] Alex Wong, Brian Taylor, and Alan L. Yuille. Exploiting
protrusion cues for fast and effective shape modeling via
ellipses. In BMVC, 2017. 3

[50] Alex Wong, Safa Cicek, and Stefano Soatto. Targeted ad-
versarial perturbations for monocular depth prediction. Ad-
vances in neural information processing systems, 33:8486–
8497, 2020. 3

[51] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano Soatto.
Unsupervised depth completion from visual inertial odome-
try. IEEE Robotics and Automation Letters, 5(2):1899–1906,
2020. 2, 3

[52] Alex Wong, Allison Chen, Yangchao Wu, Safa Cicek, Alexan-
dre Tiard, Byung-Woo Hong, and Stefano Soatto. Small le-
sion segmentation in brain mris with subpixel embedding. In
International MICCAI Brainlesion Workshop, pages 75–87.
Springer, 2021. 3



[53] Alex Wong, Safa Cicek, and Stefano Soatto. Learning topol-
ogy from synthetic data for unsupervised depth completion.
IEEE Robotics and Automation Letters, 6(2):1495–1502,
2021. 3

[54] Alex Wong, Xiaohan Fei, Byung-Woo Hong, and Stefano
Soatto. An adaptive framework for learning unsupervised
depth completion. IEEE Robotics and Automation Letters, 6
(2):3120–3127, 2021. 3

[55] Alex Wong, Mukund Mundhra, and Stefano Soatto. Stere-
opagnosia: Fooling stereo networks with adversarial pertur-
bations. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 2879–2888, 2021. 3

[56] Yangchao Wu, Tian Yu Liu, Hyoungseob Park, Stefano Soatto,
Dong Lao, and Alex Wong. Augundo: Scaling up augmen-
tations for monocular depth completion and estimation. In
European Conference on Computer Vision, pages 274–293.
Springer, 2024. 3

[57] Chao Xia, Chenfeng Xu, Patrick Rim, Mingyu Ding, Nan-
ning Zheng, Kurt Keutzer, Masayoshi Tomizuka, and Wei
Zhan. Quadric representations for lidar odometry, mapping
and localization. IEEE Robotics and Automation Letters, 8
(8):5023–5030, 2023. 3

[58] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transformers.
Advances in neural information processing systems, 34:12077–
12090, 2021. 3

[59] Yichen Xie, Chenfeng Xu, Marie-Julie Rakotosaona, Patrick
Rim, Federico Tombari, Kurt Keutzer, Masayoshi Tomizuka,
and Wei Zhan. Sparsefusion: Fusing multi-modal sparse rep-
resentations for multi-sensor 3d object detection. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 17591–17602, 2023. 3

[60] Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation
network for efficient stereo matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1959–1968, 2020. 3

[61] Fengyu Yang, Chao Feng, Ziyang Chen, Hyoungseob Park,
Daniel Wang, Yiming Dou, Ziyao Zeng, Xien Chen, Rit Gan-
gopadhyay, Andrew Owens, and Alex Wong. Binding touch
to everything: Learning unified multimodal tactile representa-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 26340–26353,
2024. 3

[62] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao.
Depth anything: Unleashing the power of large-scale unla-
beled data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024. 2

[63] Yanchao Yang, Alex Wong, and Stefano Soatto. Dense depth
posterior (ddp) from single image and sparse range. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3353–3362, 2019. 3

[64] Chithamvu Yeshwanth, Yen-Cheng Liu, Matthias Nießner,
and Angela Dai. ScanNet++: a high-fidelity dataset of 3d
indoor scenes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2023. 2

[65] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.

Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5728–5739,
2022. 3

[66] Ziyao Zeng, Jingcheng Ni, Daniel Wang, Patrick Rim, Youn-
joon Chung, Fengyu Yang, Byung-Woo Hong, and Alex
Wong. Priordiffusion: Leverage language prior in diffu-
sion models for monocular depth estimation. arXiv preprint
arXiv:2411.16750, 2024. 3

[67] Ziyao Zeng, Daniel Wang, Fengyu Yang, Hyoungseob Park,
Stefano Soatto, Dong Lao, and Alex Wong. Wordepth: Vari-
ational language prior for monocular depth estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9708–9719, 2024.

[68] Ziyao Zeng, Yangchao Wu, Hyoungseob Park, Daniel Wang,
Fengyu Yang, Stefano Soatto, Dong Lao, Byung-Woo Hong,
and Alex Wong. Rsa: Resolving scale ambiguities in monocu-
lar depth estimators through language descriptions. Advances
in neural information processing systems, 37, 2024. 3

[69] Howard Zhang, Yunhao Ba, Ethan Yang, Varan Mehra, Blake
Gella, Akira Suzuki, Arnold Pfahnl, Chethan Chinder Chan-
drappa, Alex Wong, and Achuta Kadambi. Weatherstream:
Light transport automation of single image deweathering. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13499–13509, 2023. 3

[70] Xiaoran Zhang, Daniel H Pak, Shawn S Ahn, Xiaoxiao Li,
Chenyu You, Lawrence H Staib, Albert J Sinusas, Alex Wong,
and James S Duncan. Heteroscedastic uncertainty estimation
framework for unsupervised registration. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 651–661. Springer, 2024. 3

[71] Xiaoran Zhang, John C Stendahl, Lawrence H Staib, Al-
bert J Sinusas, Alex Wong, and James S Duncan. Adaptive
correspondence scoring for unsupervised medical image reg-
istration. In European Conference on Computer Vision, pages
76–92. Springer, 2024. 3

[72] Xiaoran Zhang, Byung-Woo Hong, Hyoungseob Park,
Daniel H. Pak, Anne-Marie Rickmann, Lawrence H. Staib,
James S. Duncan, and Alex Wong. Progressive test time en-
ergy adaptation for medical image segmentation. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, 2025. 3

[73] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1851–1858, 2017. 3


	Additional Experiments
	Additional Details
	Foundational Depth Estimation Models
	Datasets
	Implementations
	Evaluation Metrics

	Discussion

