3D Gaussian Map with Open-Set Semantic Grouping
for Vision-Language Navigation

Supplementary Material

This supplementary document provides more details of
our approach and additional experimental results, which are
organized as follows:
¢ Additional Details (§A)
¢ Model Details (§B)
¢ Discussion (§C)

A. Additional Details

List of Symbols. Table Al concisely lists the symbols,
excluding unnecessary subscripts for clarity.

Notation ‘ Description Index
X Natural language instructions §3
T RGB images §3.1; Eq. @Q)&3)&(4)&(13)
D Depth images §3.1; Eq. (2)&(3)&(6)&(14)
2 Neighboring nodes §3.1
V* Other observed nodes §3.1
g* 3D Gaussian primitives §3.1;Eq. 2)
A Action space §3.3
(u,v) 2D position of each pixel §3.1; Eq. (8)&(9)
z Distance to the center of Gaussian primitives §3.1; Eq. (1)&(6)
N Position of Gaussian primitives §3.1
c Color of Gaussian primitives §3.1; Eq. (4)
s Scale of Gaussian primitives §3.1
T Rotation of Gaussian primitives §3.1
o Semantic of Gaussian primitives §3.1; Eq. (8)

« Opacity of Gaussian primitives §3.1&3.2; Eq. (4)&(6)&(8)
g Gaussian representation §3.2

m 2D masks of RGB images §3.2; Eq. (7)

F* 2D CLIP feature §3.2; Eq. (7)&(14)

Fs Semantic feature of Gaussian primitives §3.2; Eq. (8)&(14)

F*© Scene feature §3.2; Eq. (9)

F? View feature §3.3

F! Instance feature §3.3; Eq. (11)

p° Scene-level action probabilities §3.3; Eq. (9)&(12)

View-level action probabilities
p Instance-level action probabilities
Multi-Level action probabilities
F Subscript ¢ in the paper denotes the navigation step.

§3.3; Eq. (10)&(12)
§3.3; Eq. (11)&(12)
§3.3; Eq. (12)

Table Al. Notation and Description of Key Symbols.

Visualization. We provide additional visualization results
on R2R [1] val unseen splits to further illustrate the advan-
tages of our approach in spatial and semantic understanding.
In Fig. A1 (a), we highlight the role of geometric priors in
navigation. By leveraging the structured spatial informa-
tion of our 3D Gaussian Map, the agent accurately inter-
prets elevation changes and navigates through a multi-level
environment. Specifically, the agent follows the instruction
to “descend three steps” and “exit through the doorway”,
demonstrating how our approach effectively utilizes geo-
metric priors to enhance spatial awareness. Moreover, in
Fig. A1 (b), we showcase our method’s ability to handle
open-set semantics. The agent is required to recognize and
utilize semantic cues, such as “the picture hanging on the
wall” and “the kitchen”, to navigate through the scene. By

integrating OSG (§3.2) into the 3D Gaussian Map, the agent
correctly associates these semantic elements with their spa-
tial locations, ensuring accurate decision-making.

B. Model Details

2D Action Score. 2D observations provide fine-grained
contextual cues, such as object details and textures, which
complement our 3D Gaussian Map and play a crucial role
in decision-making. Therefore, following prior works [7—
9], our agent encodes the panoramic view and detected
objects into 2D visual features, denoted as F?® € R7%8,
using a multi-layer transformer with feed-forward layers
(MLT) [3]. These features are combined with instruction
embeddings X € R7%® and processed through another MLT
FMET to compute 2D action scores p*P:

p™> = Softmax(F"T([F®, X)) e [0,1]V,  (B1)

where [, | denotes concatenation and where |V| indicates the
number of candidate points. To align these scores with the
action space A, p*° is aggregated for the neighboring nodes
V stored in the topological memory. This aggregation em-
ploys a nearest neighbor matching function N, which clus-
ters scores from spatially proximate nodes and assigns a
unified score to each candidate node:

PP =N(p™,V) €0,V

This process consolidates scores from nearby nodes, ensur-
ing consistent navigation priorities for each candidate.
Navigation Losses. Following existing methods [3], we
adopt a two-stage training regime: pretraining with auxil-
iary tasks to improve multimodal representations, followed
by finetuning with behavior cloning and pseudo-expert su-
pervision to refine the navigation policy.

During pretraining, we employ the Masked Language
Modeling (MLM) task and the Single-step Action Predic-
tion (SAP) task as auxiliary objectives for R2R [1] and
R4R [6], while additionally using the Object Grounding
(OG) task for REVERIE [11] to enhance object-level rea-
soning. The corresponding loss functions are defined as:

(B2)

LMM = log p(wi| Xy, R), (B3)
T

£ =" —logp(a; |X, R<v), (B4)
t=1

£96 = —logp(o*|X, R), (BS)

where A’ represents the natural language instruction, with
x; as the masked word in MLM and X\; as the remaining
context. R denotes the trajectory, where R< ¢ indicates the



Exit the room though the doorway ahead of you, then turn left. Continue
forward, descending three steps and exit through the doorway ahead of you.

Exit the bedroom. Walk the opposite way of the picture hanging on the wall
through the kitchen. Turn right at the long white countertop.
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Figure Al. Visualization of 3D Gaussian Maps on R2R [1] unseen split. (a) Benefiting from the geometric priors in our 3D Gaussian
Map, the agent accurately perceives spatial structures and elevation changes, correctly “descend three steps” and “exiting through the
doorway”. (b) Leveraging open-set semantics, the agent correctly associates “the picture hanging on the wall” and “the kitchen” with
their spatial locations, demonstrating fine-grained semantic understanding in navigation. See § A for more details.

partial path up to step ¢. The variables a;f € A; and o* refer
to the expert action and target object, respectively.

For fine-tuning, we adopt DAgger [3] to improve naviga-
tion performance. This iterative approach refines the agent’s
policy by generating trajectories based on its current pre-
dictions and dynamically incorporating pseudo-expert feed-
back to correct suboptimal actions. The pseudo-expert su-
pervises the agent using shortest-path planning from the
partially constructed topological memory, enabling robust
and adaptive navigation in unseen environments.

C. Discussion

Terms of Use, Privacy, and License. Matterport3D [2],
R2R [1], R4R [6], and REVERIE [1 1] are available for non-
commercial research purpose.

Limitations. i) Real-World Deployment. Our method is
trained and evaluated in the static Matterport3D simula-
tor [2]. Deploying it in dynamic real-world environments
may face challenges, such as handling moving objects,
which require further research to ensure safe and reliable
operation. ii) Task Generalization. This work focuses on
indoor VLN. Its applicability to other navigation tasks, such
as those in [4, 5, 10], remains unexplored and will be inves-
tigated in future work. iii) Environmental Diversity. Our
method is primarily designed and evaluated for indoor en-
vironments, which may limit its effectiveness in other sce-
narios, such as industrial facilities or outdoor spaces.
Broader Impact. We explore the potential of 3DGS-based
technology in VLN. Specifically, we propose a 3D Gaussian
Map that integrates geometric priors and open-set semantics
into a unified representation. Furthermore, we introduce a
navigation strategy that incorporates this map into the se-
quential decision-making process of VLN. We validate the
effectiveness of our approach through extensive quantita-
tive and qualitative experiments. Finally, we hope our work
inspires new insights and advances in VLN community.
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