
Appendix

In this supplementary material, we demonstrate the qual-
itative ablation study of our Can3Tok-based VAE model;
more qualitative results; image-to-3DGS application and
more discussions.
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Figure 1. Ablation study for with and without nearest voxel coor-
dinate appending with each input 3DGS. The results indicate that
appending structured volume coordinates to the unstructured input
3D Gaussians leads to better reconstruction.

1. Ablation Studies
We perform ablation study for the importance of each mod-
ule of our method. In Tab. 2 of the main paper, we describe
the overall quantitative comparison over different ablation
studies. More specifically, we verify the performance by
removing each of the following modules:
1) w/o Learnable Query: We remove the learnable canon-
ical latent query and we replace the cross-attention block
with self-attention. We observe that simply replacing it
with self-attention fails to converge and is more likely to en-
counter out-of-memory issue, even with a batch size of one,
although we are using a GPU with a large memory capac-
ity (e.g., 80GB). In fact, this highlights the importance of
our Can3Tok module for its computational efficiency. Fig. 5
highlights that it was not possible to make a structured latent
space to recover the original inputs without cross-attention
with a low-dimensional learnable query.
2) w/o normalization: we do not apply the normalization of
data to the entire 3DGS training dataset. Both Tab.2 and
Fig. 6 highlight the severe scale inconsistency issue if a

VAE model is trained on raw 3DGS input, which hinders
scaling up training across thousands of scenes. A uniform
data normalization strategy is essential to allow large-scale
training and improve generalization.
3) w/o data filtering: we use raw 3DGS reconstruction re-
sults as a training set without data filtering. Fig. 8 implies
that by suppressing the significant noise by data filtering,
the models better learn the mapping between the latent and
inputs in a way that preserves the local details.
4) w/o voxel coordinate appending: we turn off the dual
positional embedding from 3DGS’s position and its near-
est voxel center. Instead, we append the positional embed-
ding only from 3DGS’s position. Fig. 7 show the effect of
voxel coordinate appending where its to preserve the high-
frequency local details in the reconstructed 3DGS.
5) w/o voxel data enhancement: we disable data enhance-
ment during training.

2. More Results
In Fig. 9, we demonstrate more results from our Can3Tok
with various test scenes.

3. Application: Image-to-3DGS

In this section, we showcase the application of our Can3Tok
latent space modeling. Other than text-to-3DGS, our la-
tent features can be used for image-to-3DGS generation.
To this end, we use an image encoder (e.g., [1]) that takes
as input 2D images and outputs corresponding latents; and
our pretrained Can3Tok decoder constructs the associated
3DGS scene. The pipeline is shown in Fig. 3. The ob-
jective of the encoder training is to minimize the L2 er-
ror between the predicted latents z and “Ground-Truth 3D
Gaussian latents” zGT , which are obtained by inputting 3D
Gaussians into the Can3Tok encoder. The reason we use
a regression objective instead of a diffusion objective is
that almost all text-conditioned generations including text-
to-image [3] and text-to-(3D object) [7] use diffusion ob-
jective due to their probabilistic nature. While image-to-3D
is inherently more deterministic than text-to-3D, given that
methods like Flash3D [4] and SplatterImage [5] both use re-
gression objectives. Therefore, we follow the similar idea:
regress z from an input image and then predict 3DGS from
z. We showcase some qualitative examples of this Image-



to-3DGS applications in Fig. 2.

Figure 2. Illustration of image-to-3DGS architecture.
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Figure 3. Qualitative examples of our image-to-3DGS applica-
tions.
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Figure 4. More generative results of our method with correspond-
ing text conditions. Each prompt is intentionally brief and was
not seen in the exact form during training to avoid bias toward
any specific scene. The results highlight both inter-class and intra-
class diversity, with the latter emphasized in red rectangles.

4. More Discussions
About speed, our Can3Tok VAE (1.1 s/iters) is 10 times
faster than L3DG (11.3 s/iters). This is because our method
accelerate self-attention steps by reducing the input dimen-
sion with a latent query, while 3D convolution step itself
is slower than our self-attention even with Minkowski En-
gine. Moreover, 3D CNN requires non-bachify CPU-based
voxel ID assignment for each Gaussian primitive, making
3D CNN even slower. We also evaluated our method on
text-to-(3D scene) with FID metric, which is 28.32 calcu-
lated on rendered views randomly sampled over the unit
sphere around 3D scenes, while PointTransformer achieves
153.76. Although we showcase 3DGS generation for gen-
eral scenes as an application, the main focus of our paper

is about 3D tokenization and latent modeling of scene-level
3D Gaussians. Accordingly, our emphasis is directed to-
wards latent analysis similar to image-to-latent analysis [6]
and the visualization of VAE reconstructions but on unseen
inputs, similar to experimental results in Fig.4 of Perceive-
rIO [2].
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Figure 5. Qualitative comparisons of w/ and w/o Can3Tok.
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Figure 6. Qualitative comparisons w/ and w/o normalization.
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Figure 7. Qualitative comparisons of w/ and w/o voxel coordinate
appending.
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Figure 8. Qualitative comparisons of w/o semantic-aware 3DGS
filtering.
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Figure 9. More qualitative results.
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