
Causality-guided Prompt Learning for Vision-language Models via Visual
Granulation

Supplementary Material

A. Dataset Details

In this paper, we use 11 public recognition datasets for
the base-to-new generalization task and cross-dataset
transfer task, including ImageNet-1K[9], Caltech101[10],
OxfordPets[37], StanfordCars[27], Flowers102[34],
Food101[4], FGVCAircraft[33], SUN397[50], DTD[8],
EuroSAT[16], and UCF101[43]. The detailed statistics of
these datasets are listed in Table S1.

Furthermore, we use 4 variants of ImageNet[9] for
the cross-domain generalization task, including ImageNet-
V2[40], ImageNet-S[46], ImageNet-A[18], and ImageNet-
R[17]. Each variant contains the same classes to
ImageNet[9] but different image distributions. The de-
tailed statistics of these datasets are listed in Table S2. It
is noted that ImageNet-V2[40] and ImageNet-S[46] con-
tain all the 1,000 classes of ImageNet, while ImageNet-
A[18] and ImageNet-R[17] select 200 classes from the 1000
classes of ImageNet.

B. More Visualization Results

First, in Figs. S1-S2, we provide two more image samples
from the fine-grained StanfordCars dataset[27] and the fine-
grained OxfordPets dataset[37] respectively to visualize the
attention maps of the visual representations of single indi-
vidualized attributes extracted by the attribute queries.

As seen from Fig. S1, the visual representations ex-
tracted by the attribute queries focus on similar attributes to
that shown in Fig. 6 in our main paper, and the visual rep-
resentations (e.g., the seventh to ninth attention maps) do
not contain clear information when the image lacks relevant
information.

Then, as seen from Fig. S2, the attribute queries could
extract visual representations paying attention to the dis-
criminative attributes for recognizing a pet, such as eyes,
ears, and tail. It should be noted that the seventh and eighth
attention maps focus on the same region while containing
different information. This is mainly because that the visu-
alization of attention maps can only provide an intuitive un-
derstanding of the regions associated with specific attributes
but cannot explicitly determine which attribute is being rep-
resented. Therefore, the seventh attention map likely cap-
tures the texture of the dog’s fur, as the image contains rel-
evant texture information, making this attention map more
informative. In contrast, the eighth attention map does not
convey clear information, suggesting that it may correspond
to an attribute such as the pattern on the dog’s body—an at-

tribute that is absent in this particular image. The above ob-
servations are consistent with that observed in Fig. 6, which
further demonstrate the effectiveness of the attribute queries
in extract individualized attribute-specific representations.

Furthermore, in Fig. S3, we present heatmap visu-
alizations to evaluate the effectiveness of the disentan-
gled attributes and the counterfactual granules by utilizing
10 images from 10 different classes of the StanfordCars
dataset[27]. Specifically, with the non-individualized and
individualized attribute representations disentangled from
the 10 image visual features, we calculate the cosine sim-
ilarity within the 10 non-individualized attribute represen-
tations and the 10 individualized attribute representations
respectively. The corresponding heatmaps of these cosine
similarities are visualized in Figs. S3(a)-(b) respectively.
As seen from Fig. S3(a), non-individualized attribute rep-
resentations exhibit similarity among some classes while
remaining different from others. For example, the non-
individualized representation of the first class is nearly iden-
tical to that of the ninth class and also shares similarities
with the third to fifth and seventh to eighth classes. How-
ever, it differs from the representations of the second and
sixth classes. This demonstrates that the non-individualized
attributes carry weak discrimination ability. As seen from
Fig. S3(b), the individualized attribute representations of
different classes are distinct to each other, demonstrating
that the individualized attributes have strong discrimination
ability for distinguishing one class from the other classes.
The observations from Figs. S3(a)-(b) are consistent to Fig.
5(a) in our main paper, further demonstrating the effective-
ness of the attribute disentanglement according to discrimi-
nation ability.

To further evaluate the effectiveness of the counterfac-
tual granules, we randomly select an individualized at-
tribute representation from the 10 images, and integrate it
with all the 10 non-individualized attribute representations
to construct 10 counterfactual granules. The cosine sim-
ilarity within these counterfactual granules are calculated,
and the heatmap of these cosine similarities is visualized in
Fig. S3(c). Similarly, we calculate and visualize the co-
sine similarity within the other 10 counterfactual granules
that share the non-individualized attribute but have differ-
ent individualized attributes in Fig. S3(d). As seen from
these two figures, the counterfactual granules with differ-
ent non-individualized attributes are similar across some
classes, while the counterfactual granules with different in-
dividualized attributes are distinct to each other, which are



Table S1. Statistics of the 11 public recognition datasets.

Dataset Publication information Number of classes Number of images for training Number of images for testing Task
ImageNet-1K[9] CVPR 2019 1000 1,281,167 50,000 General object recognition
Caltech101[10] CVPRW 2004 101 4,128 2,465 General object recognition
OxfordPets[37] CVPR 2012 37 2,944 3,669 Fine-grained pet recognition

StanfordCars[27] ICCVW 2013 196 6,509 8,041 Fine-grained car recognition
Flowers102[34] ICVGIP 2008 102 4,093 2,463 Fine-grained flower recognition

Food101[4] ECCV 2014 101 50,500 30,300 Fine-grained food recognition
FGVCAircraft[33] arXiv 2013 100 3,334 3,333 Fine-grained aircraft recognition

SUN397[50] CVPR 2010 397 15,880 19,850 Scene recognition
DTD[8] CVPR 2014 47 2,820 1,692 Texture recognition

EuroSAT[16] JSTARS 2019 10 13,500 8,100 Satellite image recognition
UCF101[43] arXiv 2012 101 7,639 3,783 Action recognition

Table S2. Statistics of the 4 variants of ImageNet[9].

Dataset Publication information Image distribution Number of images
ImageNet-V2[40] ICML 2019 New images following the same distribution as ImageNet[9] 30,000
ImageNet-S[46] NeurIPS 2019 Black and white sketches 50,000
ImageNet-A[18] CVPR 2021 Adversarial images with subtle disturbance 7,500
ImageNet-R[17] ICCV 2021 Artificial images 30,000

Table S3. Comparison of the training and inference times with
comparative methods. The training and inference of the compara-
tive methods and our proposed method are conducted on the Stan-
fordCars dataset[27] by utilizing one NVIDIA RTX A5000. “h”
denotes one hour, and “s” denotes one second.

Method Training time Inference time H (harmonic mean)
CoOp[61] 1.86h 0.24s 68.13

LoGoPrompt[42] 3.12h 0.24s 75.26
COMMA[20] 2.34h 0.47s 73.96

TCP[55] 2.48h 0.34s 77.32
CPL[58] 4.21h 0.24s 77.96

CoCoLe[57] 4.21h 2.90s 79.57
CaPL (ours) 4.51h 0.24s 82.01

consistent with Fig. 5(b) in our main paper, further demon-
strating the effectiveness of the disentangled attributes and
the simulation of alternative context to alleviate spurious
correlations.

C. Efficiency Analysis

At the training stage, the proposed method adopts a two-
stage training scheme, which involves learning a BBDM for
attribute disentanglement, leading to a relatively long train-
ing time. In contrast, at the inference stage, our method only
uses the learned text prompt to calculate cosine similarity
for recognition, resulting in a short inference time. Specif-
ically, Table S3 presents the training and inference times
of several comparative methods and our proposed CaPL on
StanfordCars[27] under the base-to-new generalization set-
ting. The results for the comparative methods are obtained
using their released codes and official implementation de-
tails, and all experiments are conducted on one NVIDIA
RTX A5000. Additionally, we report the harmonic mean of
each method. Three key observations can be revealed from
the table: (1) The training times of the comparative meth-
ods [20, 55, 61] are relatively short, since they primarily

learn prompts (and, in some cases, simple additional mod-
ules); (2) The training times of the comparative methods
[42, 57, 58] and our proposed CaPL are relatively long due
to the two-stage training scheme, which involves learning
additional components such as a name-to-image generator
[42], a visual cache [58], a conceptual codebook [57], and a
BBDM (our CaPL), alongside prompt learning; (3) The in-
ference time of our CaPL is as short as that of [42, 58, 61],
since our CaPL and these comparative methods only involve
calculating cosine similarity using the learned prompt. In
contrast, methods like [20, 55, 57] incur longer inference
times due to additional modules and operations. The com-
bination of comparable training time, short inference time,
and the highest harmonic mean highlights the efficiency and
effectiveness of our proposed CaPL.



(a) Images (b) Attention maps of visual representations of single individualized attributes

Figure S1. An image sample (a) from the StanfordCars dataset[27] and the attention maps (b) of its corresponding individualized attribute
representations.

(a) Images (b) Attention maps of visual representations of single individualized attributes

Figure S2. An image sample (a) from the OxfordPets dataset[37] and the attention maps (b) of its corresponding individualized attribute
representations.
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Figure S3. Heatmaps of the cosine similarities calculated within (a) non-individualized attribute representations, (b) individualized attribute
representations, (c) counterfactual granules that have different non-individualized attributes but share the individualized attribute, and (d)
counterfactual granules that share the non-individualized attribute but have different individualized attributes.


