Curve-Aware Gaussian Splatting for 3D Parametric Curve Reconstruction

Supplementary Material

This supplementary material first provides detailed ex-
perimental settings, including data processing procedures,
implementation details for comparison baseline methods,
and evaluation metrics.

In Fig. 1, we provide additional visual comparisons
of our method against state-of-the-art baselines on ABC-
NEF [10]. Our code and data are available at https://github.
com/zhirui-gao/Curve-Gaussian.

1. Datasets

The proposed method is evaluated on three publicly avail-
able datasets: ABC-NEF [10], Mv2Cyl’s Real Objects [2],
and the Replica Dataset [7]. Detailed descriptions of each
dataset and the experimental setups are provided below.

ABC-NEF Dataset. The ABC-NEF dataset is a widely
adopted benchmark for evaluating 3D curve reconstruction
quality. It contains precise CAD models with diverse curve
types, comprising 115 objects in total. Following the pro-
tocols of EMAP [3] and EdgeGaussians [1], objects with
indistinct sharp curve features were filtered out, resulting in
82 objects for evaluation. Each object includes 50 images
with a resolution of 800 x 800. For computational efficiency,
all images were resized to 400 x 400.

Mv2Cyl’s Real Objects Dataset. The Mv2Cyl’s Real
Objects dataset consists of multiple 3D-printed objects cap-
tured using an iPhone 12. Multi-view images were ex-
tracted from continuous videos, with camera poses com-
puted using COLMAP. Ground truth CAD models are also
provided for evaluation. This dataset presents a significant
challenge for 3D edge detection due to the top-down per-
spective of the captured images. To generate edge maps,
the following pipeline is employed:

* SAM2 [6] is utilized to segment objects from the back-
ground.

* A monocular normal estimation network [9] is applied to
identify high-curvature regions as object edges. This ap-
proach demonstrated superior performance compared to
edge detection methods [5, 8], which often extracted ir-
relevant edges due to lighting interference.

» Edge maps are resized to 480 x 480 for faster processing.

Since the camera poses and CAD models are not aligned
in the same coordinate system, the Iterative Closest Point
(ICP) was used to register the reconstructed edge points
with the ground truth CAD curves for quantitative evalu-
ation.

The lack of real-world benchmarks for 3D curve recon-
struction is a notable gap in the field. The Mv2Cyl’s Real
Objects dataset addresses this limitation. After getting per-

mission from the authors of Mv2Cyl, a standardized bench-
mark for evaluating 3D edge reconstruction will be pro-
posed based on their multi-view images. We believe it will
be an important contribution to the field.

Replica Dataset. We follow the experimental setup in
EMAP [3] on this dataset, focusing on three scenes: Room
0, Room 1, and Room 2.

2. Baselines

Our method is compared against four state-of-the-art 3D
line and curve reconstruction baselines. These include three
learning-based methods—NEF [10], EdgeGaussians [1],
and EMAP [3]—and one line-based Structure-from-Motion
(SfM) method, LIMAP [4]. For a fair comparison, the de-
fault parameters and settings provided by the authors are
adopted for all baselines. In the case of NEF and EMAP,
their pre-trained models were directly applied to generate
visual results.

3. Evaluation Metrics

To quantitatively assess the performance of our method,
we adopt a set of evaluation metrics that align with estab-
lished protocols in this field. Points are uniformly sampled
along both the reconstructed parametric curves and the cor-
responding ground-truth edges, enabling a direct compari-
son between them. The metrics are introduced as follows:

* Accuracy: This metric calculates the average distance
from each predicted point to its closest counterpart on the
ground-truth curve. Smaller values correspond to higher
accuracy.

* Completeness: This measures the average distance from
each ground-truth point to the nearest predicted point.
Improved performance is indicated by lower values.

* Precision at Threshold 7 (P(7)): This quantifies the
proportion of predicted points that lie within a distance
7 of any ground-truth point. Higher precision values re-
flect better alignment with the ground truth.

* Recall at Threshold 7 (R(7)): This evaluates the propor-
tion of ground-truth points that have at least one predicted
point within a distance 7. Higher recall values signify bet-
ter coverage of the ground truth.

In addition to these conventional metrics, we introduce

a new metric, Curve Count, which evaluates the compact-

ness of the reconstructed curves, which can be found in Ta-

ble 2 of the main paper. This metric counts the total number
of curves generated by the method, providing insight into
the efficiency of the representation. A smaller curve count
indicates a more concise and compact reconstruction, which
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is advantageous for downstream tasks that require efficient
curve processing.

For consistency with prior evaluations, precision and re-
call are computed at distance thresholds of 7 = 5, 10, and
20 millimeters (mm). For other parameters in the evalua-
tion, such as the number of sampling points, we adhere to
the same settings as those used in EMAP [3].

4. Implementation Details

The weight coefficients A1, A2, A3, and A4 were set to 0.01,
0.01, 0.01, and 0.0005, respectively. For all Bézier curves
and straight lines, a default of 12 Gaussian points was sam-
pled per curve.

For the ABC dataset, the midpoints of Bézier curves
were initialized by uniformly sampling 15 x 15 x 15 points
in 3D space. In contrast, for COLMAP-based datasets, the
midpoints were initialized using the point cloud generated
by Structure-from-Motion (SfM). The threshold for curve
merging was kept consistent with EMAP [3].

To ensure the quality of the reconstructed curves, curves
with an opacity below 0.05 were removed, and curves with
bending angles exceeding 20° were split. Additionally,
Gaussian components with mask attributes below 0.01 were
considered redundant and discarded. Further details on pa-
rameter design and implementation can be found in the ac-
companying code.
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Figure 1. Qualitative comparisons on ABC-NEF [10]. Distinct colors represent different curves. Our method achieves more complete

and accurate edge reconstruction of objects while maintaining parametric compactness.
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