DAP-MAE: Domain-Adaptive Point Cloud Masked Autoencoder for Effective
Cross-Domain Learning
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Figure 1. t-SNE visualization of features extracted from three domain datasets: (a) Point cloud features extracted w/o HDA and w/o DFG;
(b) Point cloud features extracted w/ HDA and w/o DFG; (c) Point cloud features extracted w/o HDA and DFG:; (d) Point cloud features
extracted w/ HDA and w/ Domain DFG; (e) Domain features generated after DFG.

.1. Visualization

As shown in Fig. 1, to better evaluate how DAP-MAE can
collaboratively leverage cross-domain data to enhance the
feature adaptability of the model and improve the perfor-
mance of downstream tasks, we designed a t-SNE [45] vi-
sualization experiment to assess the learned representations,
which visualize the features extracted from the transformer
encoder.

As shown in Fig. 1(a), we first present the feature dis-
tribution of our baseline model, ReCon-SMC [36], with-
out applying the heterogeneous domain adapter (HDA) or
integrating the domain feature generator (DFG), which is
equivalent to the version pre-trained with simple combina-
tion of different domain data. The results show that the
baseline has poor adaptability to the three different do-
mains, as their features become intermingled, preventing
the model from effectively learning and distinguishing each
domain’s knowledge. This confusion can even mislead the
model as noise, ultimately causing a drop in performance.
Fig. 1(b) presents the features precessed with HDA. We
can observe that features from different domains are well
separated, with tight clustering within each domain. HDA
processes data from different domains using separate MLP,
creating distinct feature spaces and independently learn-
ing the point cloud geometry information for each domain.
This indicates that the features no longer share the same
feature space, allowing better adaptation for downstream
tasks without interference from other domains. Further-
more, Fig. 1(c) illustrates the features without HDA pro-
cessing but concatenated with the domain feature generated
by DFG. While the clustering performance is improved,
some outliers still deviate from their domain centers. This
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Figure 2. Comparison of classification accuracy during fine-
tuning, showing how freezing or unfreezing the parameter of
MLPs in HDA affects performance.

situation may occur because the domain features learned by
DFG come from the overall domain characteristics decom-
posed from point cloud features, which may not generalize
well to individual samples. To further investigate, we inde-
pendently visualize the domain feature in Fig. 1(e), where
similar issues of domain features deviating from their clus-
ter centers are observed. However, we can see that each do-
main maintains its own distinctive distribution, indicating
the model’s ability to learn unique domain feature patterns.
When fine-tuned with tasks in the same domain, the model
can leverage these patterns for rapid adaptation, leading to
better performance. Finally, by combining the features pro-



cessed through HDA and DFG, as shown in Fig. 1(d), the
clustering is significantly improved, demonstrating the ef-
fectiveness of our two contributions.

.2. Additional experiments

Figure 2 compares classification accuracy during fine-
tuning, highlighting the effects of freezing or not freezing
the parameter of MLPs in HDA across fine-tuning epochs.
Notably, in the final 100 epochs, the frozen MLPs approach
achieves superior performance, while the unfrozen MLPs
approach is prone to overfitting, resulting in a noticeable
drop in accuracy.

The left side of Tab. 1 illustrates the impact of loss func-
tion weights on the performance of downstream tasks. Our
total loss function is defined as:

L =wi L + w2['c0n7 (D

which consists of a reconstruction loss L. and a contrastive
loss Lcon, balanced by weights wq and wo respectively. We
can observe that increasing the weight of the reconstruction
loss in the supervised setting while reducing the weight of
the contrastive loss leads to better performance. This may
be because the contrastive loss is prone to overfitting during
pre-training.

Table 1. Comparison of loss weight settings and learning rate ef-
fects.

w1 wa Accuracy Learning Rate | Accuracy
1.0 1.0 93.80 0.001 94.84
10 0.1 94.32 0.0005 95.18
100 0.001 95.18 0.0001 94.84

The effectiveness of cross-domain data. Figure 3 shows
the object classification results of models pre-trained on
point clouds from one, two, and three domains, with and
without DAP-MAE. One can observe that simply increasing
the data does not improve and may even decrease the object
classification performance. In contrast, with DAP-MAE, as
the training data gradually increases, the performance also
gradually improves, showing no signs of saturation.

MLP coefficients. Figure 4 shows the evolution of the co-
efficients generated by the MLP(") and MLP(?) during fine-
tuning on the expression recognition and object classifica-
tion. The coefficients all exhibit a trend of increasing fol-
lowed by decreasing, indicating that in the early stages of
fine-tuning, the learning capability of HDA on point clouds
from other domains is more involved in the fine-tuning.
As performance on the current task domain improves, they
gradually withdraw.

.3. Experimental details.

Cross-domain dataset. ShapeNet [2] was captured from
object (0) domain, which contains more than 50,000 3D
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Figure 3. Effectiveness of cross-domain data.
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Figure 4. Coefficients learned by MLP in HDA.

point clouds across 55 object categories. For the face do-
main (IF), the original FRGCv2 [32] consists of 4,007 high-
quality 3D face scans from 466 individuals with expres-
sion variations. In the pre-training, we utilized the enriched
FRGCv2 [10], which contains about 120K 3D faces from
1K individuals. S3DIS [1] consists of six large-scale indoor
scenes from three different buildings, covering a total of 273
million points across 13 categories. Only the training split
of S3DIS was used.

Fine-tuning datasets. The pre-trained DAP-MAE was
fine-tuned on five datasets, each corresponding to a different
downstream task: object classification (Q), few-shot learn-
ing (0), part segmentation (Q), facial expression recogni-
tion (IF), and 3D object detection (S).

For object classification (), DAP-MAE was fine-tuned
on ScanObjectNN [44], which consists of approximately
15,000 real-world objects across 15 diverse categories, and
then evaluated using three different protocols, OBJ-BG,



Table 2. Training details for different downstream tasks.

Configuration Object classification

Few-shot learning ~ Part segmentation

Facical expression recognition

Object detection

Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 5e-5 Se-4 8e-5 le-4 5e-5
Batch size 32 32 64 32 8
Weight decay 0.05 0.05 0.05 0.05 0.1
Training epochs 300 150 300 300 1080
‘Warm-up epochs 10 10 10 0 10
Learning rate scheduler Cosine Cosine Cosine Cosine Cosine
Drop path rate 0.1 0.1 0.2 0.1 0.1
Number of points 2048 1024 2048 2048 40000
Number of point patches 128 64 128 128 2048
Point patch sizes 32 32 32 32 64

OBJ-ONLY, and PB-T50-RS. The few-shot learning (O) ex-
periments were conducted on the ModelNet40 [51] dataset,
following the protocol established by [31, 40]. The experi-
ments were structured as “n-way, m-shot”, i.e. the training
set contains n selected categories and m samples for each
category n € {5,10} and m € {10, 20}. Part segmentation
(0) was conducted on ShapeNetPart [2] which consists of
16,881 objects spanning 16 categories.

For facial expression recognition (), DAP-MAE was
respectively fine-tuned on BU-3DFE [57] and Bosphorus
[39]. BU-3DFE contains 2,500 scans of 100 individuals
(56 females and 44 males) aged between 18 and 70. Each
individual has 25 samples representing seven different ex-
pressions: one neutral expression and six basic expressions
with four different intensities. Bosphorus contains a total
of 4,666 3D face scans collected from 105 individuals aged
between 25 and 35. Among them, 65 individuals exhibit the
six basic expressions with single intensity.

For 3D object detection (S), DAP-MAE was evaluated

on ScanNetV2 [6], which consists of real-world richly an-
notated 3D point clouds of indoor scenes. ScanNetV2 com-
prises 1201 training scenes, 312 validation scenes, and 100
hidden test scenes. In ScanNetV2, 18 object categories are
labeled using axis-aligned bounding boxes.
Experiment setting. As Tab. 2 shows, the batch size
was set to 512, and DAP-MAE was optimized using the
AdamW optimizer with an initial learning rate of 0.0005
and a weight decay of 0.05. While the learning rate was de-
cayed by a cosine schedule with a warm-up period of 10
epochs, the total epoch number was 300. Random scal-
ing and translation were used for data augmentation. Also
Tab. 2 shows the fine-tune details on various downstream
tasks. All experiments were conducted on an NVIDIA
V100 GPU (32GB).



