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In this supplementary material, we first present more dis-
cussion of our parallex attention maps. Then, we provide
more results of different models on the HCI and HCI old
dataset. Finally, more intermediate visual results of our
model are shown.

1. Discuss about ECAAN
1.1. The key point of our methods.

Unlike PAM in binocular vision, the offset scales and occlu-
sion patterns in the attention maps between views in LFs are
different. Visualization of more attention maps are present
in Fig. A. As shown, the attention maps exhibit varying
scales and the corresponding matching points are hard to
find in occluded areas (labeled with red arrows). Our ap-
proach is the first to focus on aggregating these attention
maps for LF disparity estimation. On one hand, the de-
signed ECSU successfully unify scale of the attention maps.
On the other hand, we design COFA to detect occluded ar-
eas and aggregate disparity information from non-occluded
areas, producing clearer aggregated attention maps.

1.2. The superiority of our method

The ability of handling large disparities: Our model
excels in handling both large disparity scenes and real-
world scenes (Tab.1 and Fig.6). Moreover, our approach
yields smoother results across varying disparity inputs
(Fig.5). Both cost-volume based methods and our method
require a predefined disparity range. The difference is that
for a large disparity range, the cost volume based methods
have to change the way they construct the cost volume
accordingly by using large granularity, where the receptive
field may be insufficient to capture correspondence over
the large disparities. Therefore, their disparity maps exhibit
noticeable disruptions in depth smoothness as in Fig.5.
By contrast, our model is able to capture the long-range
correspondence using the attention mechanism, which

*Corresponding author: zhangshuo@bjtu.edu.cn

yflin}@bjtu.edu.cn

achieves better performance in large disparity scenes and is
robust to different disparity variations.

2. Experiments

2.1. Comparison of Efficiency

We compare the efficiency of different methods measured
by the running time (in seconds) for inferring the disparity
map from a 4-D LF image in Tab. A. All the non-learning
methods are implemented on the CPU and the learning-
based methods are tested on the NVIDIA A4000. Tab. A
shows that traditional non-learning methods [2, 4, 9] cause a
sizeable computational burden. With the GPU acceleration,
the estimation time for learning-based methods is reduced.
Compared with the other learning methods that need cost
volume construction [3, 5-8], our model achieves compara-
ble running times using self-attention for disparity estima-
tion.

2.2. Comparison on HCI Benchmark

We submitted our results to the HCI online benchmark eval-
uation labeled as “LF_depth_2" and Tab. B presents the re-
sults of different methods on the HCI ‘test’ dataset. Com-
pared with UnOcc [3], our epipolar consistent aggrega-
tion perceives occlusion information and fully extracts and
fuses disparity information from different views by assign-
ing weights to views. Our model shows significant improve-
ment on the Bad Pixel metric over unsupervised methods
[3, 5] and achieves comparable results with some super-
vised methods [8] in some scenarios, indicating that our
model significantly reduces the performance gap between
supervised and unsupervised methods.

The estimated disparity maps and the corresponding er-
ror maps are shown in Fig. B. Our results have more accu-
rate edges than the current best-unsupervised method Un-
Occ [3] with obviously fewer errors in all scenes. UnOcc [3]
processes the input image by dividing it into 4 sub-images
and discards all the information in the possible occluded
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Figure A. Addition examples of the attention maps.

Table A. Comparison of the running time (seconds) of different methods for disparity map estimation from a 512 x 512 x 7 x 7 LF.

Non-Learning ‘ Supervised ‘ Unsupervised
SPO [9] CAE[4] OAVC [2] ‘ EPINet [6] LFattNet [7] OACC-Net [8] ‘ Unsup [5] UnOcc [3] Ours
65.00 229.3 68.63 \ 1.35 7.04 21.7 \ 5.57 0.16 1.02

input sub-images. In contrast, our occlusion-aware aggre-
gation assigns different fusion weights to filter the ambigu-
ous information and accurately fuse the disparities obtained
from different views.

We also visualize the performance of our model on the
HCI old dataset in Fig. C. Our results have more accurate
disparity information than other methods, even compared
to those supervised methods [1, 6—8]. For example, the su-
pervised methods make significant errors in “papillon” and
“stilllife”. This shows that our model has strong generaliza-
tion ability and achieves good prediction results on different
datasets.

3. Visualization

3.1. Visualization of Occlusion Masks

In this part, we verify the effectiveness of the occlusion
mask calculation. Specifically, we show the original gener-
ated four occlusion masks O g, _3), O0,3), O(—3,0)> O(3,0)
as well as the extended four occlusion masks O(_3 _3),
O(—3,3)» O(3,—3), O(3,3) using Equ (5) in section 4.4, as
in Fig. D. We also show the ground truth occlusion masks
for comparison, which are calculated by warping the related

views to the central view according to ground truth disparity
and thresholding the differences.

As in Fig. D, our occlusion masks are able to cover the
occluded regions in input LF images. Taking the ball in
the scene “Sideboard” as an example, the occlusion area in
O(3,0y mostly appears above the object, while the perceived
occlusion in O g 3) mostly appears on the left side of the ob-
ject. The view I3 3) is located on the upper right side of the
central views. The occlusion appears on the left and above
the object in O3 3), the same as in ground truth. The results
fully prove the effectiveness of our occlusion mask genera-
tion method and ensure that the model pays more attention
to the learning of non-occluded regions.

3.2. Visualization of Intermediate Results

We also show the Dy, oy and D g ., regressed from parallax
attention maps computed from different views in Fig. E to
show the differences of these disparity maps.

Compare with the disparity map Dy, oy and D g ), the
errors caused by occlusions in D, oy disappeared in D g ).
Specifically, in the red region, our model perceives oc-
clusion in the vertical moving views while perceiving the
correct depth information in the horizontal moving views.
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Figure B. Visual comparison of scenes “Boxes”, “Cotton”, “Dino”, “Sideboard” with state-of-the-art methods. The BadPix (0.03) error

maps, the MSE error map, and the disparity maps are shown.

Table B. Quantitative comparison of Bad Pixel 0.07, 0.03, 0.01 and MSE*100 on HCI 4D LF synthetic scenes.

| Bed | Bic | Herbs | Ori
| 007 | 003 | 001 | MSE | 007 | 003 | 001 | MSE | 0.07 | 003 | 001 | MSE | 0.07 | 003 | 001 | MSE
CAE[4] 579 | 2536 | 68.59 | 0.24 | 1123 | 23.62 | 59.65 | 5.14 | 955 | 23.16 | 59.24 | 11.67 | 10.03 | 28.36 | 64.16 | 1.78
Non-L SPO[] 487 | 2353 | 7238 | 021 | 1091 | 2691 | 71.14 | 557 | 826 | 30.63 | 86.63 | 1124 | 11.70 | 32.71 | 7558 | 2.04
OAVC[2] 492 | 19.09 | 6476 | 022 | 1222 | 2546 | 6474 | 489 | 873 | 29.65 | 7476 | 1037 | 12.56 | 30.59 | 69.36 | 1.48
EPINet [6] 240 | 693 | 3399 | 022 | 9.90 | 18.05 | 46.37 | 4.69 | 12.10 | 2895 | 62.67 | 970 | 592 | 1437 | 4594 | 147
Su LFatNet [7] | 279 | 532 | 1333 | 037 | 951 | 1600 | 31.36 | 335 | 522 | 949 | 1927 | 6.61 | 482 | 893 | 2219 | 174
P | AUMLENet[1] | 207 | 528 | 1619 | 0.13 | 884 | 1606 | 32.71 | 3.09 | 543 | 947 | 1884 | 638 | 440 | 9.04 | 2246 | 1.00
OACC-Net[8] | 231 | 571 | 2198 | 0.15 | 808 | 1440 | 3275 | 291 | 652 | 4679 | 8642 | 657 | 407 | 972 | 3225 | 0.88
Unsup(5] 2161 | 43.62 | 7544 | 093 | 3024 | 5031 | 7842 | 1174 | 63.94 | 79.66 | 9255 | 14556 | 53.41 | 72.74 | 89.04 | 8.82
Unsup UnOcef[3] 12,69 | 37.82 | 7456 | 039 | 21.65 | 45.66 | 77.93 | 624 | 1696 | 57.12 | 8578 | 1395 | 19.82 | 6255 | 87.19 | 1.93
Ours 640 | 1842 | 50.84 | 027 | 17.12 | 3046 | 59.66 | 7.21 | 1081 | 24.17 | 5720 | 14.81 | 11.04 | 28.10 | 61.33 | 1.99

Therefore, the disparity information D, o) produces errors,
while D g, contains the correct disparity information. The
yellow area is the opposite. There is an occlusion in this
area in I(o ., while the original information is retained in
I(y,0)- At the same time, we show the occlusion perceived
by different views in these two block regions. Our module
perceives the correct occlusion relation in the region and
uses occlusion information to perform occlusion-aware ag-
gregation.

Moreover, since views I (g _3) and (g 3) are far from the
central view, the position offsets are 3x larger than the ad-
jacent views I (g, _1) and (¢ 1 due to the larger baseline. On
one hand, the errors caused by the occlusion areas are more
serious in Do _3y and D g 3) than in D¢y, _1y and D g 1).
On the other hand, since the baseline is larger, it is eas-
ier to estimate a more precise disparity in sub-pixel level
in D(g,_3) and D (g 3y. Therefore, the background plane is
smoother in Do, _3) and D(g 3y thanin Do _1y and D(q 1).
Therefore, in this paper, we propose to fully exploit the
complementary information between the disparity informa-

tion calculated from different views.
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Figure C. Visual comparison with state-of-the-art methods on the HCI old dataset. The MSE error map and the disparity maps are shown.
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Figure E. Visualization of disparity maps regressed from parallax attention maps computed from different views.
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