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1. Details of baseline methods
1.1. Packing details
1.1.1. Semantic segmentation
In semantic segmentation, an image is pre-processed into
multiple 518 × 518 patches by crop and resize operations.
These patches are fed into DINOv2, which produces fea-
tures of shape 1370 × 1536. In the proposed dataset, each
image is pre-processed into 2 patches, resulting in features
with a shape of 2 × 1370 × 1536. We reshape FSeg from
2 × 1370 × 1536 into 2740 × 1536 by vertically stacking
them.

1.1.2. Depth estimation
In depth estimation, an image is first horizontally flipped.
Both the original and flipped images are padded to dimen-
sions that are multiples of 14 before being processed by DI-
NOv2. For each image, DINOv2 generates 4×1611×1536
features at the split point SPDM . Thus, the shape of FDpt

is 2× 4× 1611× 1536. FDpt is packed in two steps. First,
each 4× 1611× 1536 feature is horizontally packed into a
1611×6144 feature by concatenating the features along the
width. Second, the two 1611× 6144 features (original first
and then flipped images) are vertically stacked, forming a
3222× 6144 feature.

1.1.3. Text-to-image synthesis
For text-to-image synthesis, the original feature FTTI has a
shape of 16 × 128 × 128, where 16 represents the number
of channels. We divide the 16 channels into 4 subgroups.
Within each subgroup, the 128 × 128 features are horizon-
tally concatenated to form a 128× 512 feature. Finally, the
four 128 × 512 features are vertically stacked to produce a
final packed feature of size 512× 512.

1.2. Training details
1.2.1. Training dataset construction
We construct our training dataset from public datasets. The
training features are extracted in the same way as the test
dataset. The source code will be made publicly available,
and we encourage researchers to extract features from their
own source data.

As mentioned in the main text, raw features consume a
significant amount of storage. During training, we encoun-
tered storage challenges. For example, 20000 original FDpt

features occupy 1474 GB of storage. As the demand for
additional training data grows, storage requirements could

increase substantially, often exceeding the resources avail-
able to researchers in academic institutions. To address this
issue, we crop the features into smaller dimensions to facil-
itate feature coding training. The specific cropping config-
urations are detailed in Table 1.

It is worth emphasizing that while cropping is effective
for feature coding training, this strategy is not applicable to
large model training. For large models, cropping features
to accelerate training is impractical, as downstream mod-
els typically require complete semantic information. For
example, cropping a 256 × 256 patch from FDpt would
make it challenging to perform accurate depth estimation.
Therefore, designing efficient feature coding methods re-
mains crucial for reducing the storage burden in large model
deployments.

After feature extraction, the same truncation and quan-
tization operations are applied to the training dataset. For
the Hyperprior baseline, all features are normalized to the
range [0, 1] before training.

1.2.2. Hyperparameter Setting
The hyperparameters, such as the number of training
epochs, initial learning rate, and λ values, are provided in
Table 1. The number of training epochs is determined based
on the size of the training dataset. In our experiments, all
training processes converge to a stable loss. Five different
λ values are used to achieve various bitrates.

2. Additional experimental results
2.1. Complexity analysis
We present the encoding and decoding complexity analy-
ses in Table 2. The VTM baseline and Hyperprior baseline
are evaluated on an Intel® Xeon® E5-2690 v4 CPU and a
single NVIDIA GeForce RTX 4090 GPU, respectively. It
is important to note that the VTM baseline is a handcrafted
codec and cannot be executed on a GPU.

For the VTM baseline, encoding time increases as QP
decreases and feature resolution increases. The block-based
VTM codec exhaustively examines multiple partitions and
modes during encoding, making it significantly more time-
consuming than decoding. VTM is one of the reference im-
plementations of the VVC standard. In practical deploy-
ments, a more efficient VVC codec, such as VVEnc, can be
used to accelerate encoding. For the Hyperprior baseline,
the decoding complexity is slightly higher than the encod-
ing complexity. Across different bitrates, the encoding and
decoding complexities remain comparable.



Task Source Dataset Number of Samples Feature Shape Epoch Learning Rate Lambda

Cls ImageNet 5000 256 × 256 800 1e-4 0.001, 0.0017, 0.003, 0.0035, 0.01

Seg VOC2012 5000 256 × 256 800 1e-4 0.0005, 0.001, 0.003, 0.007, 0.015

Dpt NYUv2 20000 256 × 256 200 1e-4 0.001, 0.005, 0.02, 0.05, 0.12

CSR Arc-Challenge, OpenBookQA 6000 64 × 4096 200 1e-4 0.01405, 0.0142, 0.015, 0.15, 10

TTI Captions from COCO2017 50000 512 × 512 60 1e-4 0.005, 0.01, 0.02, 0.05, 0.2

Table 1. Training details of the Hyperprior baseline.

Task Image Classification Semantic Segmentation Depth Estimation Common Sense Reasoning Text-to-Image Synthesis

Metric QP Enc. Dec. QP Enc. Dec. QP Enc. Dec. QP Enc. Dec. QP Enc. Dec.

VTM
Baseline

22 267.20 0.23 22 2301.30 1.11 22 14169.36 5.15 22 336.27 0.24 22 107.98 0.16
27 275.02 0.22 27 2039.34 0.94 27 10862.76 3.54 27 423.84 0.29 27 87.33 0.15
32 124.40 0.15 32 1399.71 0.52 32 7776.30 2.33 32 362.98 0.24 32 62.11 0.15
37 28.00 0.13 37 407.30 0.32 37 1590.27 1.14 37 162.05 0.17 37 32.38 0.24
42 8.55 0.14 42 70.66 0.27 42 348.68 1.17 42 66.28 0.18 42 15.70 0.15

Metric λ Enc. Dec. λ Enc. Dec. λ Enc. Dec. λ Enc. Dec. λ Enc. Dec.

Hyperprior
Baseline

0.01 0.04 0.06 0.015 0.3 0.38 0.12 1.57 2.05 10 0.07 0.12 0.2 0.03 0.03
0.0035 0.04 0.05 0.007 0.31 0.4 0.05 1.59 2.05 0.07 0.07 0.09 0.05 0.03 0.03
0.003 0.04 0.05 0.003 0.31 0.39 0.02 1.55 1.88 0.015 0.06 0.08 0.02 0.03 0.03

0.0017 0.05 0.06 0.001 0.29 0.35 0.005 1.54 1.84 0.0142 0.07 0.08 0.01 0.03 0.03
0.001 0.05 0.06 0.0005 0.29 0.36 0.001 1.57 1.91 0.01405 0.06 0.08 0.005 0.03 0.03

Table 2. Encoding and decoding complexity evaluations. “Enc.” and “Dec.” denote encoding time and decoding time, respectively. The
running time is measured in seconds.

2.2. Generalizability analysis

Here, we visualize the λ-BPFP curves and the rate-accuracy
curves for the cross evaluation to provide a more intu-
itive presentation of the results. The λ-BPFP curves reveal
that the same λ produces different rate-distortion trade-offs
across various tasks, indicating that features extracted from
different tasks do not share similar coding properties. From
the rate-accuracy curves, we observe that coding models
trained for one task struggle to achieve comparable perfor-
mance when applied to another task. The generalizability of
feature coding methods across multiple tasks has received
limited attention in prior research. By presenting these re-
sults, we aim to highlight this important research direction
and encourage further exploration.

2.3. Ablation on truncation and quantization

In this subsection, we examine the impact of truncation and
quantization on feature coding. As shown in Table 4, trun-
cation and quantization individually result in little task ac-
curacy loss. When both are applied together, task accuracies
experience slight decreases. However, applying the VTM
baseline to quantized features leads to a significant reduc-
tion in accuracy.

Without truncation, feature values are often limited to a
small subset within the full range of [0, 1023]. In this sce-
nario, during feature coding, the codec’s internal quantiza-
tion maps values with a small range to a single value, intro-

ducing significant distortion. By applying truncation, this
range is expanded, which helps mitigate distortion caused
by VTM’s internal quantization. To demonstrate this effect,
we test several truncation ranges and encode the truncated
features using fixed QPs (27, 32, 37). As presented in Table
5, smaller truncation ranges generally yield higher accuracy
but come at the cost of increased bitrates. Therefore, select-
ing an appropriate truncation range is crucial for balancing
the target bitrates and accuracy.

2.4. Distribution analysis on decoded features

We visualize the distribution of reconstructed features in
Fig. 2, comparing the two baseline methods at similar bi-
trates. For SPDM , the Hyperprior baseline fails to recon-
struct features within their original distribution range. The
reconstructed features appear truncated during the feature
coding process. We attribute this truncation to the Hy-
perprior’s internal quantization (rounding operation), where
the transformed latent variables are directly rounded to in-
tegers before entropy coding. In contrast, the VTM base-
line quantizes original features into a broader distribution
range of [0, 1023], effectively preventing the truncation
phenomenon. A similar truncation phenomenon is observed
for SPH . For SPGS , the features are encoded at a higher
bitrate and the truncation phenomenon is not observed.
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Figure 1. λ-BPFP curves and R-A curves of generalizability evaluation on Seg, CSR, and TTI tasks.

Proposed Features Existing Features

Source Dataset Split Point Max Min Mean IV GM Split Point Max Min Mean IV GM

ImageNet SPDS 79.01 -502.04 0.0782 17.04 3.97 C5-ReLU 7.81 0 0.4594 9839.49 143.22

VOC2012 SPDS 94.88 -485.23 0.0780 13.30 4.30 C5 8.00 -4.24 0.2473 7323.72 131.90

NYUv2

SPDM1 3.25 -2.33 -0.0015 128.91 17.92 p2 10.83 -11.11 -0.1726 8452.88 159.45
SPDM2 4.99 -26.08 -0.0005 36.96 10.00 p3 8.35 -9.02 -0.1277 9418.53 168.38
SPDM3 23.51 -314.26 0.0042 9.61 2.76 p4 9.06 -9.93 -0.0629 8499.73 158.89
SPDM4 96.04 -493.17 0.0731 12.54 4.35 p5 9.61 -8.22 -0.0295 9402.06 169.13

Arc-Challenge SPGS 27.50 -26.38 0.0038 419.14 33.28 / / / / / /

Captions from COCO2017 SPH 3.67 -2.11 0.5664 21130.12 138.53 / / / / / /

Table 3. Statistics of the proposed features and existing features. (Gradient magnitude values are scaled by 105).

Configuration Cls Seg Dpt CSR

Truncation Only 100 81.60 0.4992 100

Quantization Only 99 81.37 0.4982 100

Truncation + Quantization 100 79.93 0.4941 100

Quantization + VTM QP22 0 5.35 1.6085 6

Table 4. Ablations on truncation and quantization operations.

3. Additional dataset analysis
In addition to the visualizations provided in the main
text, we present further statistical analyses of the proposed
dataset.

3.1. Distribution analysis
We compare the statistical characteristics of the proposed
features with those of existing features by randomly sam-
pling 10 examples from each dataset and reporting their
maximum, minimum, and mean values in Table 3. Overall,
the proposed features exhibit a broader distribution range
compared to existing features. In particular, for multi-scale
features, the distribution range expands in deeper network
layers, whereas existing features exhibit smaller variations.
Moreover, although the proposed features tend to be more
asymmetric, their mean values remain closer to zero.

3.2. Redundancy analysis
To evaluate spatial redundancy, we compute intensity vari-
ance (IV) and gradient magnitude (GM), where gradients

Image Classification Semantic Segmentation

[-5, 5] [-30, 30] [-5, 5] [-30, 30]

BPFE Acc. BPFE Acc. BPFE mIoU BPFE mIoU

2.90 100 0.38 91 2.84 79.83 0.37 76.38
2.05 100 0.06 24 1.98 79.40 0.08 63.46
1.15 100 0.02 14 1.10 78.68 0.01 39.32

Depth Estimation Common Sense Reasoning

[-5, 5], [-5, 5] [-20, 20], [-30, 30] [-2, 2] [-10, 10]

BPFE RMSE BPFE RMSE BPFE Acc. BPFE Acc.

1.42 0.6490 0.58 0.8569 3.16 98 0.84 98
0.73 0.9604 0.17 1.1360 2.30 99 0.15 82
0.33 1.2453 0.04 1.3073 1.44 99 0.04 20

Table 5. Ablation results on truncation regions. SPDM1 and
SPDM2 features are truncated into [-1, 1] and [-2, 2] in all cases,
respectively.

are derived using the Sobel operator. Before these com-
putations, both pixel and feature values are quantized to
10-bit integers. The intensity variance of the proposed fea-
tures spans a wide range, from 9.61 to 22918.26, whereas
existing features have a narrower range from 7323.72 to
9839.49. A similar trend is observed in gradient magnitude.
These broader variations underscore the higher diversity of
the proposed features. Furthermore, among the proposed
features, textual features reveal distinct distribution charac-
teristics compared to visual features. For instance, SPGS

and SPH exhibit larger intensity variance and gradient mag-
nitude. This observation highlights the necessity and impor-
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SPDM3, QP = 42
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Figure 2. Frequency and CDF visualization of the original trun-
cated and reconstructed features. Green and red are for the origi-
nal truncated features. Yellow and black are for the reconstructed
features. Left: the VTM baseline. Right: the Hyperprior baseline.

tance of incorporating textual features in the dataset.

3.3. Visualization

We visualize the distributions, feature blocks, and DCT
blocks of FCls and FSeg extracted from SPDS in Fig. 3
and Fig. 4. These distributions exhibit high similarities
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Figure 3. Visualization of the frequency distribution and CDF for
the FCls and FSeg features.
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Figure 4. Visualization of the original feature blocks and their
corresponding DCT blocks for the FCls and FSeg features.

to the features extracted from SPDM4, as they are derived
from the same layer. To avoid redundancy in the main pa-
per, these visualizations have been moved here.


