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Figure 1. Ablation on high-frequency alignment scale s.

1. Additional ablation study
1.1. Effect of high-frequency alignment scale
In Fig. 1, we study the effect of high-frequency scale s. As
s increases, the high-frequency guidance starts to take ef-
fect by aligning structure with source (e.g., mouth). Further
increasing could result in large gradient and affect structure
preservation and image quality (e.g., blurred generation in
the rightmost column). We empirically find that it works
well within the range of [100, 200]. These discussions are
also observed in Tab. 1a, suggesting our high-frequency
guidance is robust to the choice of scale.

1.2. Effect of feature and layer choice
In Fig. 2, we ablate the choice of feature and layer in high-
frequency injection. Since prior work [19] observes that
decoder features provide better cues for structure preser-
vation than encoder, we use the decoder features for high-
frequency injection. In Fig. 2a, the comparison of gener-
ated images between convolution and self-attention features
shows that convolution features are preferable for structure
preservation, which is aligned with the observation in [19].
The quantitative results in Tab. 1b also indicate the convo-
lution feature is a better choice for structure preservation.
In Fig. 2b, we compare the convolution features from differ-

Source Align + Conv (Ours) Align + Query
“a photo of a woman” “a watercolor painting of a woman”

Align + KeyAlign

(a) Feature choice. Align denotes high-frequency alignment. Conv de-
notes high-frequency injection with convolution features. Query/Key de-
notes high-frequency injection with self-attention features query/key, respec-
tively. PCA visualization of convolution and attention features are provided
below the image, showing that convolution features have better disentangle-
ment of object parts (e.g., face and hair). Therefore, convolution features are
more suitable for compensating our high-frequency alignment.
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(b) Layer choice. The convolution features from decoder upsample block
up block.[1,2,3] are used. First row only injects high-frequency components
of features (i.e., ours) while second row injects both low- and high-frequency
components (i.e., direct replacement of features used by prior works).

Figure 2. Ablation on feature and layer choice in high-
frequency injection.

ent decoder blocks. Along with our high-frequency align-
ment, the high-frequency injection at commonly-used layer
4 is enough for structure preservation. Deeper layers with
higher resolutions (e.g., layer 11) incorporates more appear-
ance information and form the final prediction. This might
cause appearance leakage (e.g., eyes and mouth), which is
consistent with the observations in [19]. Note that as we



s DINO ↓ Edge ↑ CLIP ↑ HPS ↑
0 0.037 0.915 0.270 27.76

100 0.034 0.930 0.271 27.64
200 0.035 0.931 0.271 27.56
800 0.031 0.928 0.269 27.25

(a) High-frequency alignment scale s.

Variant DINO ↓ Edge ↑ CLIP ↑ HPS ↑
Query 0.042 0.921 0.265 27.14
Key 0.038 0.929 0.272 27.48
Conv (Ours) 0.035 0.931 0.271 27.56

(b) Feature choice in high-frequency injection.

rlp CSD ↑ CLIP ↑ HPS ↑
0 0.554 0.259 27.27
3 0.637 0.262 27.38
5 0.649 0.260 27.34
20 0.701 0.249 26.91

(c) Threshold rlp for low-frequency guidance.

rhp r
pix
hp DINO ↓ Edge ↑ CLIP ↑ HPS ↑

0 20 0.031 0.935 0.266 27.61

3 10 0.033 0.933 0.273 27.54
3 20 0.035 0.931 0.271 27.56
3 30 0.036 0.927 0.271 27.62
3 50 0.038 0.913 0.270 27.70

5 20 0.038 0.929 0.270 27.65
10 20 0.041 0.926 0.269 27.68

(d) Threshold rpixhp /rhp for high-frequency guidance.

Table 1. Quantitative ablations on Aesthetics [18]. The default
setting is highlighted.

only inject high-frequency components of convolution fea-
tures, the color leakage is less apparent but there are still
traces at layer 11. Therefore, we use convolution features
from layer 4 of decoder for high-frequency injection.

1.3. Quantitative ablations on frequency threshold
In addition to the qualitative ablation on frequency
threshold in main paper, we provide quantitative results
in Tabs. 1c and 1d. For low-frequency guidance thresh-
old (Tab. 1c), extremely large rlp (e.g., 20) may have bet-
ter style preservation but fails to follow target prompt. We
empirically find that rlp = 5 has better balance between
style preservation and image-text alignment. As for high-
frequency guidance threshold (Tab. 1d), we find that it
works well for rhp ≤ 5 and rpixhp ≤ 30. In practice, as dis-
cussed in main paper, we choose rhp = 3 as it has better bal-
ance between fidelity to source image’s content and image-
text alignment. For rpixhp , we choose rpixhp = 20 as it has bet-

Method Style-guided Structure-guided

CSD ↑ CLIP ↑ HPS ↑ DINO ↓ Edge ↑ CLIP ↑ HPS ↑
Image editing method
CycleDiff [20] 0.601 0.270 26.67 0.054 0.900 0.258 27.04
DDPM-Edit [8] 0.644 0.271 26.85 0.038 0.925 0.265 27.51
LEDITS++ [1] 0.715 0.254 26.70 0.031 0.937 0.240 27.13
FlexiEdit [10] 0.663 0.260 26.11 0.094 0.882 0.230 25.89

Image translation method
P2P+NT [5, 15] 0.662 0.244 26.14 0.025 0.942 0.238 26.66
PnP [19] 0.543 0.265 26.39 0.052 0.915 0.259 26.94
P2P-Zero [16] 0.617 0.243 25.94 0.059 0.886 0.218 24.37
FreeControl [14] 0.512 0.270 27.01 0.063 0.907 0.267 27.45
Ctrl-X [13] 0.354 0.271 26.60 0.144 0.843 0.275 27.09
PIC [11] 0.507 0.251 25.96 0.049 0.903 0.243 26.56
FCDDiff [4]† 0.538 0.252 26.30 0.036 0.928 0.252 26.67
FBSDiff [3] 0.610 0.260 26.71 0.053 0.909 0.264 27.16
FGD (Ours) 0.718 0.274 26.93 0.032 0.935 0.269 27.57

Table 2. Additional quantitative results on ImageNet-R-
TI2I [19]. †: training-based method.

ter balance between structure preservation and image-text
alignment.

2. Additional experimental results

2.1. Additional quantitative results
Following [8, 19], in Tab. 2, we provide style- and structure-
guided translation results on ImageNet-R-TI2I (IN-R) [19].
Our method achieves competitive results on both tasks.
Note that although LEDITS++ [1] and P2P+NT [5, 15] have
strong style/structure preservation performance, they have
low CLIP score, suggesting these works struggle with fol-
lowing target prompt instruction to change the source im-
age. FreeControl [14] and Ctrl-X [13] are able to generate
high-quality images (high HPS score) with strong image-
text alignment (high CLIP score). However, they are in-
ferior with style preservation (low CSD score) and struc-
ture preservation (high DINO distance, low Edge similar-
ity), which is also observed in Fig. 4 of main paper and
in Figs. 4 and 5 of supplementary.

2.2. Adaption to Stable Diffusion v1.5
By default, we use Stable Diffusion v2.1 (SDv2.1) [17] as
pre-trained T2I model. In Tab. 3, we apply our method
to Stable Diffusion v1.5 (SDv1.5) and show that it gener-
alizes well on models with different capacities. In Fig. 3,
we provide qualitative results and show that compared with
SDv1.5 variant, SDv2.1 variant is able to generate images
with better quality (e.g., facial details in 4th row), more de-
tails (e.g., hair in 2nd row) and better image-text alignment
(e.g., watercolor style in 5th row). However, despite the
fact that SDv1.5 variant is less expressive, it still success-
fully follows the target prompt and preserves the essential



Method Backbone Style-guided Structure-guided

CSD ↑ CLIP ↑ HPS ↑ DINO ↓ Edge ↑ CLIP ↑ HPS ↑
DDPM-Edit [8] SDv1.5 0.645 0.272 26.67 0.041 0.922 0.265 27.21
FBSDiff [3] SDv1.5 0.587 0.270 26.59 0.052 0.910 0.265 27.02
Ours SDv1.5 0.690 0.273 26.70 0.034 0.931 0.267 27.30

DDPM-Edit [8] SDv2.1 0.644 0.271 26.85 0.038 0.925 0.265 27.51
FBSDiff [3] SDv2.1 0.610 0.260 26.71 0.053 0.909 0.264 27.16
Ours SDv2.1 0.718 0.274 26.93 0.032 0.935 0.269 27.57

Table 3. Comparison of results with SDv1.5 and SDv2.1 on ImageNet-R-TI2I [19].

Method Style-guided Structure-guided

CSD ↑ CLIP ↑ HPS ↑ FID ↓ Time ↓ DINO ↓ Edge ↑ CLIP ↑ HPS ↑ FID ↓ Time ↓
P2P+NT [5, 15] 0.669 0.236 26.41 136.8 144s 0.027 0.950 0.252 26.98 112.3 144s
PnP [19] 0.477 0.254 26.63 192.6 77s 0.044 0.919 0.270 26.99 192.6 77s
P2P-Zero [16] 0.426 0.237 26.09 219.9 76s 0.046 0.920 0.230 26.29 142.0 76s
FreeControl [14] 0.436 0.252 27.22 227.3 182s 0.045 0.913 0.270 27.42 179.1 182s
Ctrl-X [13] 0.230 0.264 26.94 263.8 17s 0.123 0.860 0.269 26.16 228.7 17s
PIC [11] 0.421 0.254 26.65 222.3 17s 0.053 0.909 0.243 26.32 184.1 17s
FCDDiff [4]† 0.434 0.261 26.39 239.62 8s 0.038 0.928 0.231 26.36 173.01 8s
FBSDiff [3] 0.436 0.257 26.38 253.1 86s 0.058 0.908 0.253 26.58 166.6 86s
FGD (Ours) 0.649 0.260 27.34 151.7 12s 0.035 0.931 0.271 27.56 160.4 25s

Table 4. Comparison of sampling time on LAION-Aesthetics 6.5+ [18]. The running time on one NVIDIA 3090 GPU is reported. We
additionally report FID (Fréchet Inception Distance) [6]. However, because the translated image may not have the same distribution as the
original input image, most baselines in the area of image translation don’t use FID.

style/structure in the generation.

2.3. Additional qualitative results
In Figs. 4 and 5, we provide more qualitative results. As ob-
served in main paper, compared with baselines, our method
is able to generate images that preserve source image’s
style/structure and match target text prompt. In particu-
lar, for style-guided translation, our method has better detail
preservation (e.g., clothes and hair in 3rd row of Fig. 4) and
color alignment with source image (e.g., 4th row of Fig. 4).
For structure-guided translation, our method has better abil-
ity of preserving edges and contour (e.g., facial details in 2nd

row, big and small boats in 4th row of Fig. 5).

2.4. Diverse sampling results
In Fig. 6, we show that our FGD is able to generate di-
verse sampling results for the fixed target prompt by ap-
plying DDPM inversion [8] to invert initial latent through
adding Gaussian noise.

3. Sampling time
In Tab. 4, we compare the sampling time of training-free
image translation methods. Our method achieves compet-

itive results against prior works with relatively low cost.
In particular, on style-guided translation, our time is much
lower than prior works as we don’t rely on long step in-
version (e.g., 50 vs. 1000 steps used by FBSDiff [3]). Al-
though P2P+NT [5, 15] exhibits strong style and structure
preservation performance, as discussed in main paper, it of-
ten fails to follow target prompt and leaves the source im-
age unchanged, which is indicated by the low CLIP score
(image-text alignment).

4. Additional implementation details

4.1. Implementation

We use layer 4 of decoder for high-frequency injection as
prior work [19] observes that compared with deeper lay-
ers with higher resolution, it contains structure information
without resulting in appearance leakage from source image.
The spatial size of convolution features is 16 × 16. Fol-
lowing common practice [3, 19], CFG [7] scale is 7.5 and
DDIM sampling step is 50 with η = 1.
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Figure 3. Qualitative results with SDv1.5 and SDv2.1.

4.2. Dataset
LAION-Aesthetics 6.5+ [18]. Following FBSDiff [3],
we evaluate on LAION-Aesthetics 6.5+ [18], a subset of
LAION-5B [18] containing high-quality images with aes-
thetic scores of 6.5 or higher. As the selected samples
and adopted prompts used in the evaluation of FBSDiff [3]
are not available, we create a benchmark by sampling 200
source images from Aesthetics, 100 for each task of style-
/structure-guided translation. These images include paint-
ings/photos of humans, animals and other objects (e.g.,
boat, flower, plane). For style-guided translation, 80% are
paintings while the others are photos. For structure-guided
translation, 60% are paintings while the others are photos.
Samples of these images are provided in Fig. 7. We first use
BLIP [12] to automatically generate source text prompts de-
scribing these images. Then we manually revisit the gen-
erated source prompts to ensure they accurately describe

the source images. For each task of style-/structure-guided
translation, we manually create 3 target prompts for each
pair of source image and source prompt. For style-guided
translation, we replace the object in source prompt by using
target prompt to specify a different object class, i.e., class
that is semantically related to the class in source prompt
(e.g., “a painting of a man” → “a painting of a boy”). For
structure-guided translation, we use target prompt to specify
a different style (e.g., “a photo of a dog” → “an oil painting
of a dog”). The new style is randomly sampled from a list
of style choices: oil painting, watercolor painting, pencil
sketch, sculpture and origami.

PIE-Bench [9]. PIE-Bench [9] is a prompt-driven im-
age editing benchmark. We use subset “1 Change Object”
(i.e., change an object to another) for style-guided transla-
tion and subset “9 Change Style” (i.e., change the image
style) for structure-guided translation. Each of the subset
has 80 images, including paintings and photos of humans,
animals and scenes.

ImageNet-R-TI2I [19]. ImageNet-R-TI2I [19] (IN-
R) is a widely-used dataset in image translation and edit-
ing [8, 14, 19], with various renditions of 10 classes from
ImageNet [2]. Each image has 5 target prompts. Among
them, 3 prompts are structure-guided text instructions (e.g.,
“a sketch of a penguin” → “a toy of a penguin”) while
the other 2 prompts modify both style and structure (e.g.,
“a sketch of a penguin” → “a sculpture of a swan”).
We directly use the 3 structure-guided instructions for our
structure-guided translation task. For style-guided transla-
tion, we keep the style unchanged in the prompt (e.g., “a
sketch of a penguin” → “a sketch of a swan”).
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Figure 6. Diverse sampling results with fixed target prompt.
Top: eyes are different. Bottom: sunset is different.
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