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A. Additional Details
A.1. Data formatting in the YUV colorspace
With the YUV 4:2:0 format, the two chroma components are sampled at half the sample rate of luma. Hence, we perform
trilinear interpolation to upsample the chroma components and yield the input of the GIViC network where all channels are
of the same spatial resolution. We respectively adopted and experimented with the following design choices:
• (Current design) The denoiser ϵθ generates a two-channel output, where one of the channels could be de-multiplexed into

U and V channels of the original frame. In this case, the diffusion denoising loss is calculated in the YUV 4:2:0 colorspace.
• (V6.1) The denoiser ϵθ generates a three-channel output that is matched against the upsampled input to GIViC, where

the diffusion denoising loss is calculated in the YUV 4:4:4 colorspace. The predicted frame’s U and V channels are
downsampled via trilinear interpolation to yield the final YUV 4:2:0 reconstruction.

• (V6.2) The denoiser ϵθ generates a three-channel output that is matched against the upsampled input to GIViC, where
the diffusion denoising loss is calculated in the YUV 4:4:4 colorspace. We then fix the main model, attach and fine-tune
another downsampling layer which is optimize to reduce the distortion loss in the YUV 4:2:0 colorspace.
The above options were ablated on the UVG and JVET-B datasets and the resulting average BD-rate figures, with the

original GIViC as the anchor, are reported in Table S1. It could be seen that although the resulting difference is trivial, the
current design offers the best overall performance.

ablation option UVG JVET-B

(V6.1) +0.3 +0.5
(V6.2) +0.2 +0.4

GIViC +0.0 +0.0

Table S1. Ablation results (BD-rate, %) for different diffusion loss calculations in the YUV 4:2:0 colorspace.

A.2. Baselines
All baseline models used for comparison in the present paper are open-source and were acquired from their official repos-
itories. Specifically, we re-trained VCT [5], C3 [4], and PNVC [2] with the default training configurations in the YUV
colorspace. For C3, we did not use its best performing variant (i.e., adaptive configuration) as it requires sweeping over nine
hyperparameters per patch for the entire video.

B. Additional Experiments
B.1. Compression Performance
We further report the compression performance measured by VMAF (Video Multimethod Assessment Fusion) and LPIPS
(Learned Perceptual Image Patch Similarity), as shown in Table S2). VMAF and LPIPS are perceptual metrics designed to
better approximate human perception of quality. Unlike traditional metrics such as PSNR and MS-SSIM, which can often
misalign with subjective human experience, VMAF and LPIPS are known to provide scores that more accurately reflect
perceived visual quality. This closer alignment with human vision has led to significant shifts in the industry; for instance,
the optimization of modern codecs like AV1 is increasingly oriented towards VMAF. Even when evaluated against these more
challenging and perceptually-focused metrics, our proposed model demonstrates preferable performance. It could be seen
from Table S2 that GIViC still outperforms the benchmark codecs in terms of LPIPS and VMAF, which further demonstrates
its advanced compression efficiency.



BD-rate (%) UVG MCL-JCV JVET-B

Codec LPIPS VMAF LPIPS VMAF LPIPS VMAF

VTM 20.0 (RA) [1] -16.65 -17.29 -13.31 -13.32 -10.98 -11.00
AV1 libaom v3.0.2 (RA) [3] -24.46 -19.71 -19.39 18.97 -12.01 -7.33

C3 [4] -63.33 -62.31 - - -56.32 -58.99
GIViC w/o Overfit. -4.59 -4.87 -3.21 -3.41 -3.33 -3.35

Table S2. Compression performance results of the proposed GIViC framework. Here each BD-rate value is calculated when the corre-
sponding benchmark codec is used as the anchor.

B.2. Rate-Distortion-Complexity
One major limitation of GIViC is its non-trivial computational complexity due to the adoption of diffusion and transformer
backbones, both of which are known to be computationally demanding. Its encoding time is particularly long: 1.78 hours
per GOP of 32-frames at 1080P, which results in about 34 hours to train a 600-frame sequence on a single A100. However,
we show in Table S3 that the encoding time could be drastically reduced by 2× and 29×, respectively, when we allow the
latent grids and hidden states to be initialized from the previous GOP and when we simply remove the overfitting steps. In
Table S4 we further analyze the rate-distortion-complexity trade-off by modifying the number of diffusive sampling steps and
the model size. The small (GIViC-S) and medium (GIViC-M) variants still demonstrate superior compression performance
over VTM (RA) whilst achieving considerably improved decoding efficiency.

These results have also indicated the flexibility of GIViC in terms of supporting a diverse set of encoding and decoding
complexities without much performance degradation, thanks to its pretrain-then-overfit scheme as well as the expressiveness
of the proposed diffusion transformer backbone.

Encoding GOP1 GOP2 GOP3 GOP4 Avg. Time BD-rate (%)

w/ overfit. 1.78h 0.85h 0.84h 0.84h 16.56h -15.89
w/o overfit. 0.06h 0.06h 0.06h 0.06h 1.15h -12.27

Table S3. Per-GOP and whole sequence average convergence time on a single A100. BD-rate (%) is measured against VTM on UVG.

BD-rate Steps Params (M) Peak Memory (G) Enc. FPS Dec. FPS

Variants Enc. / Dec. A100 / 3090 A100 / 3090

GIViC-S -3.77 4 79 4.5 / 1.9 3.51 / 1.62 18.90 / 12.88
GIViC-S -4.00 8 79 4.5 / 1.9 3.51 / 1.62 14.86 / 8.71
GIViC-M -8.01 4 135 11.5 / 4.3 1.01 / 0.41 15.55 / 10.94
GIViC-M -8.99 8 135 11.5 / 4.3 1.01 / 0.41 12.21 / 5.99
Original -15.94 8 226 22.8 / 8.5 0.03 / 0.01 9.79 / 3.45

Table S4. BD-rate (%, against VTM) and complexity results of GIViC variants on a single A100 and a single 3090 GPU, respectively.

C. Impact Statement
The development of neural video compression techniques can lead to significant economic, social, and environmental im-
pacts. With video content comprising over 80% of total internet traffic, enhancing compression efficiency will substantially
reduce storage demands and transmission costs. This, in turn, improves the scalability of video-based entertainment, real-time
communication, and remote collaboration while also minimizing energy consumption and carbon emissions. By advancing
video compression technologies, we can drive widespread economic savings, enhance digital connectivity, and contribute to
environmental sustainability on a global scale.
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