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1. Details of the proposed GCZ dataset

The General Cross-modal Zone (GCZ) dataset is a multi-
modal, one-scene, real-world dataset, designed specifically
for the purpose of cross-arbitrary-modal image matching. It
is a multi-source remote sensing imaging data, encompass-
ing a wide range of modalities, including RGB, PAN, NIR,
SWIR, MSI, HSI, SAR, LiDAR, Map, and others. The over-
all data is visualized in Fig. 1. The scene includes a variety
of ground features, such as land, water bodies, and coast-
lines. The land features include plains, mountains, hills,
forests, bare rocks, etc., while the anthropogenic objects in-
clude farmland, buildings, roads, bridges, and man-made
canals. The aim is to incorporate a variety of elements with
their potentially unique textures and structural characteris-
tics to thoroughly demonstrate the algorithm’s efficiency.

Through testing, we find that the optical modalities are
similar in morphology, resulting in excellent matching per-
formance. However, this similarity makes it difficult to fully
test the cross-modal capabilities of HOMO. Therefore, in
this experiment, we simplify GCZ to six major categories:
VIS, IR, SAR, Depth, Map, and Other, which are sufficient
to test the integrated capabilities of the algorithms. The to-
tal size of GCZ is 5780×22000. Patches are standardized
using a 4096×4096 cropping window, with a slightly more
than 50% overlap, and then resized to 512×512. And in the
experiments, using the randomly distorted sample creation
method shown in Fig. 2 and filtering out invalid samples, a
total of 4752 samples are obtained. This makes the GCZ be
the largest publicly available, real-world, generally cross-
modal image matching dataset.

This dataset has been manually matched, calibrated, and
reviewed carefully, resulting in a standardized registered
groundtruth that can be used for distorted sample generation
and training data creation. The dataset will be released in
the form of processed three-channel RGB-visualized PNG
images, mainly for researching purpose on image matching.

2. Details of fine-tuning of compared networks

The training samples of GCZ are created using the method
shown in Fig. 2, which is also widely adopted in many re-
lated works. In the process, patches are randomly trans-
formed until the training (tuning) ends. Fine-tuning is per-
formed on D2-Net and LoFTR, as two representative net-
work frameworks of detector-based CNN and detector-free
CNN+Transformer. The labels, loss, and other details are
kept consistent with the official implementation. 30% of

randomly selected cropped GCZ samples are used as train-
ing set, utilizing the distortion method in Fig. 2 until the
training ends.

However, with training of randomly distorted samples,
these models could not handle such wide ranges of cross-
modal samples with arbitrary rotations. The training ul-
timately resulted in these networks being effective either
only within a small range of rotation angles (±15◦) for each
modality, or being invariant to any rotation but only under
specific modalities. This revealed the inherent limitations
of these models, indicating that larger models must be uti-
lized. The number of fine-tuning epoch are 60 and 10 for
D2-net and LoFTR in the experiments, respectively, which
produces the best performances.

3. Parameters of HOMO
The fixed value of all settable parameters of HOMO in the
experiments are listed in Tab. 1. All parameters are selected
based on extensive parameter sweeps to achieve the best
overall performance. It is worth noting that the downsam-
pling ratio is set to 1.2, with an octave number of 4, ensuring
the ability to accommodate scale differences up to a ratio of
1.24 > 2. Larger scale differences in practical data can
be easily handled by pre-sampling the images to an appro-
priate range. The maximum points number in DoM key-
point detection is set to 3600 to ensure fairness with most
detector-free network methods under 512× 512 input sam-
ples, based on the calculation: (size/coarse-boundary)2 →
(512/8− 4)

2
= 3600. All other compared methods use

their original default parameters.

Table 1. Pre-fixed parameters of the HOMO.

Module Parameter Value

MOM
LG scale number 4
LG orientation number 6
ASW scale number 4

DoM LNMS window size 3
Maximum points number 3600

GPolar
Structure size R2 72
Cell division NA 12
Angle division NO 12

MsS

Octave number Noctave 4
Layer number Nlayer 3
Downsampling ratio 1.2
Gaussian blurring σ 1.6



Figure 1. The visualization overview of our proposed GCZ dataset.

Sample

RotationScalingTranslationCropping Random Distorted Reference

Figure 2. Creation method of randomly distorted GCZ samples.

Figure 3. Feature flow of the input image in the whole HOMO
framework.

4. Ablation study
The proposed HOMO framework consists of a series of fea-
ture extraction and transformation processes. We summa-
rize the core processing steps in Fig. 3. The original image
undergoes a sequence of modules, resulting in the feature
flow illustrated in the figure. This process is regarded as a
complete transformation from the image pixel space to an
invariant feature space. Based on this structure, we con-
ducted detailed ablation tests by removing or replacing key
modules with other typical components. The complete ab-
lation testing results are presented in Tab. 2.

Specifically, “MOM → Gradient [0,2π)” refers to de-
grading the MOM values, which represent gradient-like ori-
entations, into classical gradients computed using the Sobel
operator—essentially the basic features used in SIFT and
related algorithms. “MOM → Gradient [0,π)” indicates en-
forcing the gradient orientations to lie within [0,π), by map-
ping values outside this range to their opposite directions, as
used in PIIFD and related algorithms. “Gabor → Gradient”
means replacing the LogGabor filtering step in the MOM

Table 2. Ablation study on portable modules of HOMO with aver-
age NCM under each rotation angle. “w/o” indicates “without”.

Average NCM under rotation 30◦ 45◦ 90◦ 120◦ 180◦

HOMO 1367 1331 1854 1367 1856

MOM

→ Gradient [0,2π) 599 313 462 134 896
→ Gradient [0,π) 1072 1037 1499 1032 1525
Gabor → Gradient 934 906 1350 862 1402
w/o ASW 1030 1005 1406 1032 1408
w/o even-ASLG 1358 1320 1717 1365 1723
w/o DoM 1279 1142 1851 1366 1851

GPolar

→ HOG (square) 971 896 1009 891 991
→ GLOH (polar) 674 732 990 679 990
→ LogPolar (polar) 1222 1248 1700 1224 1699
w/o deeper structure 1365 1329 1852 1367 1851
w/o OCD 1301 1236 1518 958 64
w/o OCD and deeper 1156 1035 1103 699 21

with gradient computation, while keeping subsequent steps
such as ASW unchanged.

When replacing the GPolar with other descriptors, only
the spatial structure of the descriptor is changed, while the
feature statistics approach remains the same, still based on
MOM values. The reference direction calculation and the
OCD module are also preserved, in order to independently
evaluate the effectiveness of the proposed descriptor struc-
ture.

The results are analyzed in the main paper.



Figure 4. Failure cases.

5. More visual results
A more comprehensive visualization of the image matching
results on the proposed GCZ dataset is shown in Fig. 5. In
addition, we present some representative matching exam-
ples on the original MRSI dataset in Fig. 6. Since the sam-
ples in MRSI exhibit little to no rotational variation, most
network-based algorithms perform well. To ensure a fair
comparison, we adopted the original non-rotation version
of RIFT (denoted as RIFT+), and similarly removed the ro-
tation operation in HOMO (denoted as HOMO+).

It is worth noting that the MINIMA-tuned version of
LoFTR (MINIMALoFTR) performs worse on the MRSI
dataset compared to the version tuned on our GCZ dataset,
even showing signs of negative optimization. This indi-
rectly demonstrates the generalization capability and high
value of the proposed GCZ dataset. Notably, HOMO, even
when relying purely on handcrafted feature transforma-
tions, can still rival many data-driven network-based mod-
els, making it a strong candidate in scenarios with limited
or unavailable training data.

6. Limitations and Failure cases
Failure cases of HOMO are illustrated in Fig. 4. These cases
typically arise in samples with extremely sparse textures
and contents, or in those with highly repetitive or blurry
structures. This issue is particularly prominent in modali-
ties such as map or day-night images. Such scenarios pose
significant challenges for traditional methods—including
HOMO—that rely on fixed local and low-level features.
Addressing these challenges likely requires more global and
deeper semantic features with broader receptive fields.
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Figure 5. Examples of visual feature matching results under different simulated rotations and scale ratios on the proposed GCZ dataset.
Matches after RANSAC are drawn. (yellow: traditional handcrafted methods, green: deep-learning network methods).
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Figure 6. Examples of visual feature matching results on the MRSI dataset. Matches after RANSAC are drawn. (yellow: traditional
handcrafted methods, green: deep-learning network methods).
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