
MagicDrive-V2: High-Resolution Long Video Generation
for Autonomous Driving with Adaptive Control

Supplementary Material (Appendix)

Please find the videos on our project website: https://flymin.github.io/magicdrive-v2/

Note: Our model is capable of generating videos at a resolution of 848×1600 for 241 frames, which is the highest resolution
and frame count in the nuScenes dataset. However, the inference cost is currently substantial. Therefore, the primary
numerical results in our paper do not utilize this maximum setting. We have included some generated results in Appendix L
and on our project website for reference. Future work may focus on further reducing the inference cost.

A. Sequence Parallel Training
Inspired by Zheng et al. [47], we employ sequence parallelism to train DiT models with large sequence lengths. As illustrated
in Figure I, we partition each input across the spatial dimension onto different GPUs. Most operations can be executed within
a single GPU; however, the attention blocks necessitate communication. On the right side of Figure I, we demonstrate the
communication process, where the full sequence is gathered, but the attention heads are distributed across different GPUs.
This approach allows for peer-to-peer communication between GPUs while maintaining a roughly equal load.
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Figure I. Diagram for Sequence Parallel. Left: We split the spatial dimension before the first block and gather them after the last block.
Right: For each attention module, we use all-to-all communication, changing the splitting dimension to attention heads. B: batch; T:
temporal dimension; S: spatial dimension; D: latent dimension; HD: number of heads; CH: per-head dimension; SP: sequence parallel size.

Additionally, for VAE encoding and decoding, we partition based on batch size and the number of camera views, leverag-
ing multiple GPUs to accelerate processing.

B. More Details for Mixed Resolution and Frames Training
MagicDrive-V2 is trained through a progressive training approach with variable length and resolution data configurations
(see Section 4.5). Consequently, our method of data mixing corresponds to the three training stages, as detailed in Table I.

Inspired by [47], to maximize the utilization of GPU resources, we employed a bucket-like approach to adjust the data
composition. Specifically, each GPU process (or sequence parallel communication group) loads only one type of data to
ensure alignment of the batch dimension. Using the training time of the video format with the longest iteration time at batch
size = 1 as a benchmark, we adjusted the batch sizes of other data formats so that each type runs at approximately the same
speed. Notably, during stage 3 training, due to the limited number of full video clips, we repeat this type of data within an
epoch. This ensures that different types of data have a similar magnitude of batch numbers within an epoch.

C. Efficiency of Progressive Bootstrap Training
The three-stage progressive training approach markedly improves model training efficiency relative to direct Stage 3 training.
Table II indicates that, over 4 days, for example, Stage 1 executes approximately 60 times more iterations than Stage 3, and

https://flymin.github.io/magicdrive-v2/


Stage Resolution Frame(s) Sequence Parallel Training Step

Stage 1 224×400 Img - 80000

Stage 2 224×400 Img, 9, 17, 33, 65 - 40000424×800 Img, 9, 17, 33

Stage 3
224×400 Img, 17, full

4 30000424×800 Img, 17, 33, 65, 129
848×1600 Img, 9, 17, 33

Table I. Configuration for Variable Length and Resolution Training. The mixing configuration aligns with our progressive bootstrap
training with 3 stages, from low-resolution images to high-resolution long videos.

Stages Seconds/Iter. Iter. for 4 days

stage 1 4.32 80k
stage 2 39.84 8.7k
stage 3 ∗264.96 1.3k

Table II. Speed for Each Training Stage of MagicDrive-V2, measured on NVIDA A800 GPUs. Over a 4-day period (for example),
Stage 1 training yields nearly 60 times more iterations than Stage 3, and Stage 2 offers about 7 times more. ∗This value is calculated by
multiplication with sequence parallel (SP) size (in practice, we use SP size of 4 for the stage 3, with 66.24s/it).

Stage 2 achieves about 7 times more iterations. The progressive training is vital for controlled generative models, which
require extensive iterations for effective convergence, as discussed in Section 4.5. The progressive strategy enables the rapid
acquisition of high-quality video generation capabilities, utilizing faster iterations in the early stages to enhance convergence
and expedite learning.

D. Video Generation Speed
Table III shows the breakdown of computation and inference costs, together with comparisons with others. By adopting the
sequence parallel, our inference speed is on par with the performance of NVIDIA’s Cosmos-transfer1 [30]. We open-source
our implementation and welcome future efforts on optimization.

Method resolution
#

views
#

frames
Diff. Steps

(sec/it)
Latent Dec.

(sec)
Total
(min) Device

MagicDrive-V2

848x1600 3 193 18.03 82.83 11.68

H20248.24 (1 GPU)
848×1600 6 241 53.74 103.36 28.92
848×1600 6 121 28.18 51.94 8.27

Cosmos-transfer1 [30] 704×1280 †6 121 20.88 54 19.92 A100-SXM4
704×1280 1 121 3.48 9 3.32

Table III. Inference speed of MagicDrive-V2. Unless otherwise specified, we use 8 GPUs for testing. As compared with Cosmos-
transfer1, our implementation of MagicDrive-V2 offers reasonable inference speeds. We also implemented a parallel decoding strategy for
latent decoding, offering 3× speedup over 1 GPU. Total time contains overhead from CPU offloading. †There is no such a model; this row
is estimated by 6× the single-view time.

E. More Experimental Details
The nuScenes [4] dataset includes 12Hz unannotated data and 2Hz annotated data. According to our experiments, high-
frame-rate videos are more beneficial for generative model learning. Therefore, we follow [12] and interpolated the 2Hz
annotations to 12Hz annotations with ASAP [37]. Although the interpolation results are not entirely accurate, they do not
affect the training for video generation. The Waymo Open Dataset [34] includes 10Hz annotated data. We follow the official



splitting, which has 798 clips for training and 202 clips for validation. The original dataset contains 5 views. However, the
dimensions of the left and right side views are smaller than those of the three front views, and their field of view is limited.
Therefore, we only retain three front views for training and validation.
Semantic Classes for Generation. We follow [12] in data setup on nuScenes. Specifically, for objects, ten categories
include car, bus, truck, trailer, motorcycle, bicycle, construction vehicle, pedestrian, barrier, and traffic cone. For the road
map, eight categories include drivable area, pedestrian crossing, walkway, stop line, car parking area, road divider, lane
divider, and roadblock. For Waymo, the semantics for objects include pedestrian, car, and cyclist, while the semantics for
road maps include drivable area, crosswalk, road line (yellow), and road line (white).

F. More Training Details
Optimization. We train our diffusion models using Adam optimizer and a constant learning rate at 8e−5 with a 3000-step
linear warm-up in the last two stages. We primarily use 32 NVIDA A800 GPUs (80G) for training. Our model can also be
trained with Ascend 910B (64G). The batch size for each stage is set according to the iteration speed, following the bucket
strategy as [47]. For example, in stage 2, we set the batch size for 33×424×800 to 1, which takes about 30s/it. Then we set
the batch size to other video types to achieve about 30s/it. This strategy can ensure the load balance between different GPU
processes.
Inference. By default, images/videos are sampled using Rectified Flow [10] with 30 steps and the classifier-free-guidance
(CFG) scale at 2.0. To support CFG, we randomly drop different conditions at a rate of 15%, including embeddings for text,
camera, ego trajectory, and boxes. We follow Gao et al. [12] to use {0} as the null condition for maps in CFG inference.
When inferring high-resolution long videos, we also use sequence parallel (Appendix A) to fit in the limited memory of a
single GPU.

G. Human Evaluation for Multi-frame & Multi-view Consistency
Evaluating multi-frame and multi-view consistency in video generation has long been a challenging issue [1], as the academic
community lacks a unified standard to accurately assess such consistency. To address this, we employed human evaluation to
measure these two aspects of consistency. Specifically, we invited participants with diverse backgrounds to compare videos
generated by MagicDrive-V2 and Gao et al. [12] under identical conditions. Participants were asked to select the video
with better consistency, and the winning probability of each model was statistically analyzed. As illustrated in Figure II,
MagicDrive-V2 demonstrated significantly superior consistency, indicating a substantial improvement over Gao et al. [12].
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Figure II. Experts evaluated content consistency against Gao et al. [12], showing MagicDrive-V2 generates videos with superior consis-
tency.

Besides, Figure III provides an ablation comparison between with and without the MVDiT block, showing that it is crucial
to include such a block for multi-view consistency.

H. Human Evaluation on Text Control
We validate text control by generating videos under six weather conditions and asking humans to judge alignment with text
prompts. The confusion matrix in Figure IV shows high recognition accuracy (> 70%), confirming effective text control.

I. More Comparison among VAEs
To quantitatively compare the performance of the VAE, we randomly selected two 6-view videos from the nuScenes dataset
and used the PSNR metric to evaluate the VAE’s reconstruction ability. Table IV presents the results, averaged across the six
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Figure III. Ablation on the MVDiT block. MVDiT block is the key to enabling multi-view consistency in driving video generation.
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Figure IV. Confusion matrix to show the text control ability in MagicDrive-V2. MagicDrive-V2 supports the control of 6+ weather
conditions.

Resolution Model Image 17 fr. 33/34 fr.

224×400
CogVAE 34.4261 31.0900 30.5986
Open-Sora 30.4127 27.9238 27.5245
SD VAE 27.7131 27.7593 27.9404

424×800
CogVAE 38.4786 33.5852 32.9202
Open-Sora 33.6114 30.2779 29.8426
SD VAE 30.9704 31.0789 31.3408

848×1600
CogVAE 41.5023 36.0011 35.1049
Open-Sora 37.0590 33.2856 32.8690
SD VAE 37.0504 33.2846 32.8680

Table IV. VAE Comparison for Street Views. CogVAE [43] and Open-Sora [47] (1.2) are 3D VAEs; SD VAE [31] is 2D VAE, which
is also widely adopted by previous street view generation (e.g., [12]). Results are PSNRs calculated through videos from the nuScenes
validation set. MagicDrive-V2 adopts CogVAE.

views. From these results, we observe that CogVAE [43] demonstrates the best reconstruction ability, even surpassing the
2D VAE [31]. Comparing the results from different settings, we find that the current 3D VAEs exhibit good generalization
ability for long videos, primarily due to the window-based downsampling techniques [43, 47]. Additionally, we observe that
high-resolution content retains a relatively high PSNR after VAE reconstruction, indicating that the current VAEs are more
favorable for high-resolution data. This observation also supports our motivation for high-resolution generation.



J. Reason for Using CogVAE without the Pre-trained Diffusion Model

Informed by the work of MagicDrive [12] and others [13], fine-tuning from a well-performing diffusion model can effectively
accelerate model convergence. Consequently, in the initial implementation of the DiT architecture, we experimented with
Open-Sora 1.2 [47]’s VAE and diffusion models. However, the results were suboptimal, with image generation and video
controllability falling short of MagicDrive’s performance. We attribute this primarily to the limited generalization capability
of text-to-video diffusion and, more critically, to the inadequate reconstruction ability of the VAE.

We conducted a comparative analysis of VAEs, as detailed in Section 5.3 and Appendix I, and found CogVAE [43] to
perform well. Given that the VAE determines the upper limit of generation quality, we opted to use CogVAE for video
encoding. Notably, CogVideoX [43] employs a novel DiT structure, where each layer’s latent space integrates both video
and text condition information. This approach may complicate the design of geometry-related conditions. Furthermore,
CogVideoX was not trained in a driving scenario. To eliminate these potential confounding factors, we decided to train
the diffusion model from scratch using CogVAE. This strategy allows us to move beyond the constraints of pre-trained
models, enabling more flexible modifications to the model architecture to achieve multi-view consistency and spatiotemporal
encoding of geometry conditions.

Our experience directly demonstrates that high-resolution, long street-view video generation does not necessarily require
pre-trained image-text or video-text models. Even so, this is beyond the primary focus of our paper, and we leave related
questions for future work.

K. Single Inference v.s. Rollout Inference
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(a) Generation from Vista. It takes the first frame as input and generates the following (only supporting the front view).
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(b) Generation from MagicDrive-V2. We take conditions as inputs and generate the full video (only show the first 9s for comparison).

Figure V. Comparison between Rollout for Long Videos (Vista [13]) and Single Inference (our MagicDrive-V2). Although rollout can
handle long videos, the quality is significantly degraded. In contrast, our extrapolation maintains high quality in long video generation.

To achieve long video generation, previous work typically employs a method of future frame prediction combined with
rollout. This involves, after the n-th inference, taking the last l frames from this inference as the first l frames for the n+1-th
inference, thus enabling long video generation. However, since the model does not directly capture long-term dependencies
and accumulates errors with each inference, such rollouts often fail to support sufficiently long videos. Among rollout
methods, Vista [13] currently achieves relatively good results. We compared a 9-second video generated by performing 4
rollouts with Vista (the paper claims it can support 6 rollouts) to a 9-second segment produced by our method, MagicDrive-
V2. It is evident that our method maintains consistent video quality over long sequences, whereas Vista’s results show a



noticeable decline. Therefore, we believe that the hybrid training and length extrapolation approach adopted by MagicDrive-
V2 can achieve higher quality in long video generation.

L. More Visualization
As said in the “Note”, MagicDrive-V2 is capable of generating 6 × 848 × 1600 × 241 videos (20s at 12 fps). We include
more generated samples in Figure VI-VII. Please see the videos on our project page.
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Figure VI. We show some frames from the generated 6× 848× 1600× 241 videos with the same scene configuration (i.e., boxes, maps,
cameras, and ego trajectory) but under different weather conditions. Conditions are from the nuScenes validation set.
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Figure VII. We show some frames from the generated 6× 848× 1600× 241 videos with the same scene configuration (i.e., boxes, maps,
cameras, and ego trajectory) but under different time-of-day conditions. Conditions are from the nuScenes validation set.


