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A. Datasets
We pretrained PROBMED exclusively on MIMIC datasets,
specifically MIMIC-CXR [26], MIMIC-ECG [19], and
MIMIC-ECHO [18]. Additionally, we constructed the
MIMIC-CONNECT subset (following [16]), which con-
tains patients with both CXR and ECG data (details in
§A.4). We maintained the same patient-level differences
in all MIMIC datasets to prevent data contamination.
Furthermore, MIMIC-CONNECT enabled the evaluation of
a multimodal approach, utilizing CXR and ECG for predic-
tion. The details are described below and Tab. 7. We split
up the datasets used by their respective modality.

A.1. Chest X-ray datasets
MIMIC-CXR [26]. This dataset is used for both pretrain-
ing and evaluation. It consists of CXR with their paired
radiology reports. We preprocessed each case’s CXR and
corresponding text using methods outlined in [61]. We re-
stricted the dataset to only the Anterior-Posterior (AP and
PA) views. For pretraining, we used a predefined training
split of the dataset for CXR-text binding.
Kaggle COVID [7]. This public dataset comprises CXR
images annotated with binary COVID-19 labels and was
used solely for ZS and FS task. For ZS testing, we gen-
erated prompts as suggested in [61].
RSNA Pneumonia [48]. The RSNA Pneumonia
dataset contains CXR images of pneumonia cases and
is publicly available through the National Institutes of
Health database. This dataset was also only used
for ZS and FS task. For ZS classification, we used
a prompt, "Chest X-ray findings consistent
with lung infection" to explain pneumonia for ZS
evaluation. We followed [16] for splitting the dataset into
train and test set.
Montgomery [4, 25]. This consists of CXR images col-
lected from Tuberculosis Control program in Montgomery
County, Maryland. It includes annotations for tuberculosis
and other thoracic abnormalities, providing a challenging
evaluation subset. For consistency with our methodology,
we used the same prompt for the RSNA Pneumonia dataset
to explain tuberculosis for ZS evaluation.
OpenI [13]. This dataset comprises CXR images, corre-
sponding radiology reports, and clinical findings extracted
from the Indiana University hospital database. Among all
CXR images, we took the CXRs with the AP view. We
used this dataset for TEXT-to-CXR retrieval evaluation.
Chexpert5x200 [24]. Following the formulation in pre-
vious works [16, 22, 61], CheXpert5x200 is a multi-

class classification subset derived from CheXpert-1.0 [24].
It consists of five distinct classes (i.e., atelectasis, car-
diomegaly, consolidation, edema, and pleural effusion),
with 200 images per class. We followed [22] for the test
split. This dataset’s experimental setup (TEXT-to-CXR re-
trieval) and evaluation metrics mirrored those applied to the
other datasets.
CheXchoNet [2]. This open-public CXR dataset has
unique pairs of CXR with gold-standard ECHO labels. We
used a label of composite of severe left ventricular hyper-
trophy and dilated left ventricle, which are both significant
findings that can be found on ECHO and also in CXR [2].
In our experiments, CheXchoNet was utilized primarily for
evaluation and acted as an emergent alignment dataset (i.e.,
detecting unseen diseases during the evaluation). ZS and
FS settings assessed the model’s performance in identifying
ECHO-based pathologies.

A.2. ECG datasets
MIMIC-ECG [19]. The dataset comprises 10-second, 12-
lead ECG recordings originally sampled at 500 Hz. These
signals were down-sampled to 100 Hz using a low-pass fil-
ter to reduce noise and computational overhead [9]. Each
ECG is accompanied by machine-generated reports and
links cart id to free-form textual data. When avail-
able, the free-form text was used to generate corresponding
ECG descriptions; otherwise, the machine reports were em-
ployed. This dataset played a dual role in our study, as it
was used for training and evaluation.
PTB-XL [55]. This ECG dataset is a large-scale, publicly
available repository of 12-lead ECG recordings and con-
tains annotated ECGs with comprehensive diagnostic labels
and expert assessments. For our experiments, we applied
similar preprocessing steps as with MIMIC-ECG, includ-
ing downsampling to 100 Hz using an appropriate low-pass
filter. The dataset was used solely for evaluation: retrieval,
ZS, and FS settings.
ICBEB [33]. This dataset provides 12-lead ECG record-
ings, annotated with diagnostic information. We applied
consistent pre-processing, that is, low-pass filtering and
downsampling to 100 Hz, to ensure compatibility with our
training protocols. The ICBEB dataset was used exclusively
for evaluation with ZS and FS experiments.
MUSIC [36]. This ECG dataset comprises vectorcardio-
grams (VCGs) originally sampled at 1000 Hz. Each VCG
recording is paired with ECHO labels indicating key clin-
ical parameters: SLVH, DLV, and LVEF. Although the
ECHO modality is not provided, the associated labels of-
fer valuable diagnostic insights. To use this dataset, we ap-



Dataset Pretrain? Modalities Task #Cls #train #valid #test
MIMIC-CXR [26] ✁ CXR + TXT Pretrain/Retrieval/Multimodal-Classification 12 86,853 12,059 24,799
OpenI [13] ✂ CXR + TXT Retrieval - - - 2,864
CheXpert5x200 [24] ✂ CXR + TXT Retrieval 5 - - 1,000
RSNA [48] ✂ CXR Classification 2 18,678 - 5,338
COVID [7] ✂ CXR Classification 2 11,028 - 2,780
Montgomery [4, 25] ✂ CXR Classification 2 32 - 106
CheXchoNet [2] ✂ CXR→ Classification 2 64,619 3,303 3,667
MIMIC-ECG [19] ✁ ECG + TXT Pretrain/Retrieval/Multimodal-Classification - 88,291 12,065 24,644
PTB-XL [55] ✂ ECG + TXT Retrieval/Classification 71 17,415 2,183 2,198
ICBEB [33] ✂ ECG Classification 9 5,501 - 1,376
MUSIC [36] ✂ ECG→ Classification 2 512 - 125
MIMIC-ECHO [18] ✁ ECHO + TXT Pretrain/Retrieval - 13,732 3,880 1,957
EchoNet-Dynamic [42] ✂ ECHO Classification 2 7,394 1,273 1,264
MIMIC-CONNECT [19, 26] ✁ ECG + CXR Multimodal-Classification - 22,397 3,292 6,664

Table 7. ALL datasets for CXR, ECG, and ECHO modalities. Pretrain column represents data used to train ProbMED. Modalities highlight
the modality types. →These datasets contain corresponding modality and ECHO-based labels derived from the ECHO-report.

plied the Kors regression transformation [54] to convert the
VCGs into 12-lead ECGs, which were subsequently down-
sampled to 100 Hz. MUSIC was used solely for evaluation
in our emergent ZS and FS experiments. Like CheXchoNet,
we used a label for a composite of severe left ventricular hy-
pertrophy and dilated left ventricle.

A.3. ECHO datasets
MIMIC-ECHO [18]. This dataset consists of ECHOs from
various patients in the MIMIC dataset cohort. We matched
patients using hadm id to connect data to discharge notes
in MIMIC-IV [27]. In this study, we used all ECHOs
connected to a discharge note containing ECHO-related
text. These texts were first processed by Llama3.1-Instruct
8B [14], followed by manual verification by human experts.
DICOMs for each ECHO were processed into individual
ECHOs. All frames were used as augmentations during
training, while only the first frame was used for evaluation.
EchoNet-Dynamic [42]. We used this ECHO dataset com-
prising apical-4-chamber ECHO videos and corresponding
left ventricular ejection fraction (LVEF) labels. Continuous
LVEF values were constructed to be binary with threshold
LVEF<40%, based on [53]. Each video has been prepro-
cessed to a standardized (3 → 112 → 112). A single frame
corresponding to the end-systolic (ES) phase of the left ven-
tricle was extracted from the ECHO video, as labeled in the
EchoNet-Dynamic dataset. We extrapolated the frame into
(3→224→224) resolution using cubic interpolation to match
the resolution with MIMIC-ECHO and used this dataset for
evaluation in ZS and FS.

A.4. MIMIC-CONNECT
MIMIC-CONNECT. We derived this dataset by link-
ing MIMIC-CXR and MIMIC-ECG to MIMIC-IV [27].
We matched subject id and hadm id ensuring that
the modality recording times were within 7-day window.
For cases with available visit identifiers, hadm id, we

directly paired MIMIC-CXR and MIMIC-ECG to form
this dataset that we refer to as MIMIC-CONNECT; when
hadm id was unavailable, the pairing was based solely on
subject id and a 7-day window between the CXR and
ECG recordings. This dataset was used for training and
evaluation–multimodal ZS and FS classification tasks.

A.5. Data Representation
We used conventional representations for each modality.
CXR images, initially single-channel (1 → 224 → 224), are
duplicated across channels to match the standard 3-channel
(RGB) inputs, making them into the size of (3→224→224).
ECG signals are treated as 12 distinct leads over time, pro-
ducing a (12 → 1000) tensor for a 10-second recording
sampled at 100 Hz. Processing ECHO videos follows the
method in ECHO-CLIP [8], utilizing separate frames with
(3 → 224 → 224) resolution instead of the entire video as
an input. Finally, text data is tokenized with a BERT-based
tokenizer [28], with sequences padded or truncated to 100
tokens to fit typical medical report lengths.

B. Loss Function Implementation
B.1. Hellinger Loss Calculation
The Hellinger equation, from [44], is calculated in this pa-
per based on the following simplifications–aligned with the
propositions in the paper. First, we bring the Eq. (6) from
the main manuscript here (as a reference):
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Assuming that the covariance matrices are diagonal, i.e.,
our base assumption in § 3.1. The determinants can be writ-
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Furthermore, because the matrices are diagonal, the
quadratic form in the exponent simplifies to a sum over di-
mensions:
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Thus, given all of this, and exp properties. We arrived at the
formulation:
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This can be simplied to in our formulation in Eq. (7):
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The pseudocode for calculating the Hellinger loss in-
volves similar computations but uses the logsumexp trick
(Algorithm 1). Hellinger distance is bounded between 0
and 1, where zero is the same distribution, and one is far
apart. To use this in losses, we instead use 1 ↑

↓
H2,

where H
2 is the squared Hellinger distance. This lets us

view our loss like cosine similarity. The implementation
and pseudo-code are provided below.

Algorithm 1 Hellinger Distance
1: procedure COMPUTEHELLINGER(qn, kt)
2: ε Get mean and log-variance:
3: µn, log(ω2

n) ↔ qn

4: µt, log(ω2
t ) ↔ kt

5: ε Convert log-variance to variance:
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13: ε Compute the sum of logs across D dims:
14: T =

∑
(T1 + T2)

15: ε Convert back with exp:
16: p = exp(T )
17: ε Compute squared Hellinger distance:
18: H

2 = 1↑ p

19: return
↓
H2

20: end procedure

Algorithm 2 SIS Loss Computation

1: procedure COMPUTESISLOSS(µ, log ω2, Ns = 2)
2: ε Compute the standard deviation w/ log-variance:
3: ω ↔ exp

(
0.5→ log ω2

)

4: S ↔ empty list
5: for l ↔ 1 to Ns do
6: ε Sample ϑ

l from standard normal distribution:
7: ϑ

l ↔ RandomNormal(shape(µ))
8: ε Reparameterization is used to obtain samples:
9: s ↔ µ+ diag(ω)ϑl

10: Append s to S

11: end for
12: ε Compute the 2N InfoNCE loss between samples:
13: L ↔ InfoNCE(S[0], S[1])
14: return L

15: end procedure

B.2. Intra-modality Loss
The pseudocode in Algorithm 2 outlines our SIS loss com-
putation for within-modality learning in three main steps.
First, we calculate the standard deviation from the given
log(ω2) by taking the exponential of half the log(ω2). Next,
we sample a normal distribution’s noise vector ϑ. By apply-
ing the reparameterization trick, scaling this noise by the
computed standard deviation, and shifting it by the mean,
we generate a sample from the desired multivariate normal
distribution with diagonal covariance [29]. This process is



Figure 4. PROBMED model architecture. Encoders follow stan-
dard models. The proposed method of extracting the µ and
log(ω2) follows PCME++ [10]. BN represents BatchNorm1d and
GPO is the Generalized Pooling Operator [5].

repeated to produce the required samples, Ns (here, Ns = 2
in our implementation–analagous to SimCLR [6]).

C. Model Architecture
PROBMED was built on PCME++ [10], which trains sep-
arate encoders for different data modalities (e.g., images
and text) and represents each input as a normal distribu-
tion in a shared latent space. Specifically, each encoder
outputs two D-dimensional vectors—one for µ and one for
log(ω2)—that parameterize a Gaussian distribution. This
setup allows the model to capture uncertainty and variabil-
ity in the learned embeddings. Following PCME++, we
found that using traditional encoders with two outputs effec-
tively trained the probabilistic models. Extrapolated from
PCME++, we produced µ and log(ω2), using a duplicated
final Transformer layer, i.e., the first branch is initialized
with the same weights as the backbone (for µ). In contrast,
the second branch (for log(ω2)) is initialized randomly. We
adopt the GPO [5] for feature aggregation, improving train-
ing stability and performance.

Fig. 4 shows an overview of our model architecture.
Our framework differs from the original PCME++ in two
key ways. First, we introduce batch normalization lay-
ers following the encoders to normalize the input based
on the mini-batch mean and variance. Second, we extend
the architecture to simultaneously handle multiple medi-
cal modalities—such as CXR, ECG, text, and ECHO—by
adding separate encoder branches for each modality. These
multimodal embeddings are learned in a unified latent
space, facilitating cross-modal alignment and downstream
clinical tasks.

D. Pretraining details
In PROBMED, each modality is processed by a dedicated
encoder chosen for its domain-specific strengths. Inspired

by PCME++—highlighting the importance of modality-
specific representations when transitioning to a probabilis-
tic embedding space—we adopt state-of-the-art pre-trained
models where they are most effective [10]. Our text data
is encoded using BioBERT [31] to capture rich, domain-
aware linguistic nuances, while the CXR modality benefits
from the robust feature extraction of the Swin-tiny [34, 38]
model. For ECHO, we employ ConvNeXt [35] CLIP, with
ECHO-CLIP weights [8] to effectively model its complex
visual patterns. In contrast, our ECG encoder is built
on a streamlined ResNet1D architecture and trained from
scratch, as our experiments did not reveal any advantages
from pretraining for this modality. This modular design en-
ables PROBMED to leverage the strengths of specialized
encoders within a unified framework for cross-modal prob-
abilistic learning.

When we pretrain PROBMED, we utilized data augmen-
tations for the input modalities. For CXR, we applied the
random cropping to 224 → 224 from 256 → 256, horizontal
flipping, color jittering, and random affine transformations
following [56]. For ECG data augmentation, we applied
adding random Gaussian noise. For the ECHO data, we ap-
plied randomized color jittering, gray scaling, and adding
random Gaussian noise.

We trained PROBMED with the following hyperparam-
eters detailed in Tab. 8. The hyperparameters for the final
loss (Eq. (11)) are ϖ = 1.0, ϱ = 0.5, ς = 0.0001. We set
the temperature scale with φ = 0.07 for all related losses;
we explore more φ parameters in §H. All our experiments
(including pretraining) were conducted on a single 48GB
L40S or a 40GB A100 GPU.

E. Evaluation Details
In this section, we expand on the results presented in the
main paper.

E.1. Zero-Shot Prompts
We generated dataset-specific prompts per label with vary-
ing descriptions of medical findings. Especially for the
emergent ZS tasks (e.g., predicting the labels observable in
ECHO using CXR), we generated 10 different prompts for
the positive label since the emergent ability of the model
often lacks capturing the meaning of the disease with us-
ing a single prompt. For non-emergent datasets, we chose
using a simple prompt for the ZS task for simplicity. To
keep the prompts concise and clinically relevant, we uti-
lized short sentences focusing on the presence or absence
of disease. We observed that succinct prompts improved
interpretability and maintained performance in our ZS eval-
uations. For generating 80 different prompts used in Tab. 5,
we used GPT-4o to paraphrase the baseline prompt making
the descriptions of all prompts consistent. We compute the
cosine distance between the text embeddings for each la-



Config TEXT CXR ECG ECHO
Pretrained Models BioBERT [31] Swin-tiny [34] XResNet-1d [21] ECHO-CLIP [8]
Final output dim. µ-output=512, log(ω2)-output=512
Optimizer AdamW
Optimizer Momentum ϱ1 = 0.9,ϱ2 = 0.95
Learning Rate (LR) 1.00e-04
LR Scheduler CosineAnnealingLR
Gradient clipping 1.0
Weight Decay 1.00e-05
Batch size 192
Total Epoches 120

Table 8. PROBMED hyperparameters.

bel (i.e., positive and negative label) and image embedding
for ZS classification. For multiple prompts, we averaged
the text embeddings for each label to generate a prototype,
representing each label.

E.2. Few-Shot Evaluation
The FS results in Tab. 10, Tab. 11a, and Tab. 11b used a tra-
ditional linear probing set-up [46]. We sampled k training
samples per class, where k ↗ {4, 16}. These were chosen
to highlight the use cases of our model in FS learning. Ex-
tended FS results (i.e., k ↗ {2, 4, 8, 16}) are presented in
the following subsection.

F. Extended Results
This section highlights the full results in many of the tables
presented in the main text.

F.1. Multimodal classification using MIMIC
We showed that Top-K retrieval analysis identifies the most
effective distance metric for retrieval in the main manuscript
under Tab. 1a, Tab. 1b, and Tab. 1c. Deterministic methods
leverage cosine similarity distance, whereas probabilistic
methods employ the distance measure used during model
training (e.g., Hellinger distance for PROBMED). While
this approach yielded strong results, we also emphasized
evaluating all models under a consistent distance metric.
Specifically, we adopted cosine similarity as the standard
measure, which, in the case of probabilistic models, in-
volves computing distances using only the µ embedding,
as initially proposed in [10]. The corresponding retrieval
performance for various modality-text pairs is presented in
Tab. 9a, Tab. 9b, Tab. 9c.

F.2. Few-Shot Classification
In Tab. 3a, Tab. 3b, Tab. 3c, we highlighted performance
under a limited range of k-shot conditions to demonstrate
our approach’s ability to learn effectively from scarce la-
beled examples. Here, we present an expanded set of few-
shot experiments (including 2-, 4-, 8-, and 16-shot scenar-
ios) for completeness and transparency. These additional

(a) Cosine-based TEXT-to-CXR retrieval
MIMIC-CXR OpenI Chexpert5x200 RSUMR@1 R@5 R@1 R@5 R@1 R@5

MedCLIP [56] 1.0 4.3 0.6 2.8 2.6 3.0 14.3
CXR-CLIP [61] 47.3 70.4 12.7 25.2 8.5 23.0 187.1
BiomedCLIP [62] 36.2 59.9 9.0 19.9 6.4 19.8 151.2
CheXzero [50] 26.7 50.0 5.8 15.1 3.5 17.8 118.9
MEDBind [16] 40.8 67.5 11.6 25.5 7.9 21.4 174.7
BioVil-T [1] 28.4 58.2 8.1 18.9 4.9 17.1 135.6
SAT [32] 40.3 69.2 6.7 14.7 9.1 26.7 166.7
PCME++ [10] 4.5 21.9 9.5 20.6 1.3 4.6 62.4
PROBMED (Ours) 47.0 70.8 13.2 28.1 8.8 23.9 191.8

(b) Cosine-based TEXT-to-ECG retrieval
MIMIC-ECG PTB-XL RSUMR@1 R@5 R@1 R@5

ECG-CLIP [16] 40.8 76.7 2.3 9.8 129.6
MEDBind [16] 44.1 78.2 3.1 12.1 137.5
PCME++ [10] 7.1 14.1 1.5 11.2 33.9
PROBMED (Ours) 51.3 86.9 2.4 12.7 153.3

(c) Cosine-based TEXT-to-ECHO retrieval
MIMIC-ECHO RSUMR@1 R@5

EchoCLIP [8] 1.1 6.4 7.5
PCME++ [10] 1.0 4.0 5.0
PROBMED (Ours) 1.7 7.8 9.5

Table 9. Cross-modal retrieval performance (Recall@K) for
TEXT-to-CXR, TEXT-to-ECG, and TEXT-to-ECHO retrieval
tasks, the similarity metric for all models is cosine similarity.

results, shown in Tab. 10, Tab. 11a, Tab. 11b, show how
each model scales with varying amounts of labeled data in
FS scenarioes.

F.3. CXR and ECG Combination
Here, we provide the complete results for our CKD and
CHD classification experiments, including additional per-
formance metrics and comparisons across all evaluated
methods. These extended results further validate the ro-
bustness of our findings, showing consistent gains from in-
tegrating CXR and ECG and demonstrating PROBMED’s
advantages over competing approaches. We also include
detailed ablations and per-class breakdowns to highlight the
nuanced benefits of our probabilistic modeling framework



Kaggle COVID RSNA Pneumonia Montgomery CheXchoNet ↼
2S 4S 8S 16S 2S 4S 8S 16S 2S 4S 8S 16S 2S 4S 8S 16S

MedCLIP [56] 80.5 85.5 88.8 90.8 55.7 58.0 61.8 65.4 87.0 87.3 86.4 88.5 52.4 55.8 59.3 63.9
CXR-CLIP [61] 81.5 86.7 89.9 91.6 60.2 64.1 66.5 70.9 80.1 85.8 89.1 91.6 51.1 53.2 55.9 59.7
BiomedCLIP [62] 82.8 86.0 88.8 89.4 75.6 80.3 83.1 84.0 86.6 87.0 90.9 92.2 58.8 59.8 60.9 61.8
CheXzero [50] 82.2 82.8 84.7 88.4 75.3 75.0 78.1 82.7 85.8 88.5 90.4 92.9 52.5 60.3 60.8 66.1
MEDBind [16] 82.0 86.2 89.6 92.0 62.5 67.3 70.6 73.4 87.5 89.9 91.0 91.8 56.0 57.6 62.2 65.4
PCME++ [10] 81.8 79.6 81.1 85.9 72.6 73.2 77.0 79.2 76.2 75.7 80.6 81.8 51.1 56.8 61.8 62.7
PROBMED (Ours) 81.7 86.5 90.4 91.8 77.5 82.2 84.0 84.7 91.2 93.1 93.2 93.7 58.0 63.3 65.3 68.5

Table 10. CXR-based few-shot extended results (2, 4, 8, 16 shots denoted as #S). Model performance is reported as AUROC (%). ε
CheXchoNet is an emergent dataset using CXR-to-ECHO labels.

(a) ECG-based few-shot classification.
PTB-XL ICBEB MUSIC ↼

2S 4S 8S 16S 2S 4S 8S 16S 2S 4S 8S 16S
ECG-CLIP [16] 62.7 67.1 70.0 71.2 62.7 69.1 72.0 74.1 44.7 48.6 51.1 51.4
MEDBind [16] 65.1 71.1 75.9 81.8 76.2 81.2 84.5 87.8 50.0 51.5 52.5 54.6
ECG-FM [37] 64.6 69.1 70.9 71.6 65.6 69.3 71.0 71.8 47.0 50.0 51.0 53.1
PCME++ [10] 72.6 75.4 77.9 79.9 65.2 74.1 79.5 80.5 49.1 46.7 50.3 48.6
PROBMED (Ours) 80.7 82.6 85.6 87.6 81.0 84.8 87.3 90.1 51.6 53.8 57.1 59.1

(b) ECHO-based few-shot results.
EchoNet-Dynamic

2S 4S 8S 16S
ECHO-CLIP [8] 88.2 88.3 93.7 95.0
PCME++ [10] 87.0 87.5 92.5 94.1
PROBMED (Ours) 86.7 87.7 95.9 96.2

Table 11. Comparison of ECG-based and ECHO-based few-shot classification results. AUROC (%) for 2-, 4-, 8-, 16-shot (#S).ε MUSIC
is an emergent dataset using ECG-to-ECHO labels.

Method CKD
ZS 2S 4S 8S 16S

CXR-only model performance
MedCLIP [56] 61.8 56.7 59.6 61.6 62.3
CXR-CLIP [61] 73.5 56.5 59.4 61.5 62.0
MEDBind [16] 71.9 54.0 54.8 55.5 57.6
CheXzero [50] 73.6 68.7 66.9 69.4 70.4
BiomedCLIP [62] 65.6 61.1 66.5 68.4 71.2
PCME++ [10] (CXR) 51.0 55.9 68.6 69.8 68.8
PROBMED (CXR) 75.0 69.8 70.6 70.8 76.5
ECG-only model performance
ECG-CLIP [16] 54.1 50.9 58.9 61.0 66.4
MEDBind [16] 61.2 54.9 66.4 66.9 67.8
ECG-FM [37] - 48.9 55.2 59.7 62.1
PCME++ [10] (ECG) 31.7 55.8 66.7 69.0 70.3
PROBMED (ECG) 68.5 56.7 67.4 65.1 71.1
Using both ECG + CXR Models
MEDBind [16] 71.5 54.3 68.4 69.8 69.8
PCME++ [10] 46.8 56.5 69.4 70.6 71.6
PROBMED 78.1 67.5 71.5 73.4 76.8

Table 12. MIMIC-CKD Results

in zero-shot and few-shot scenarios.

G. Visualizations
G.1. Qualitative Image-Text Visualizations
Consider a patient’s CXR showing signs of respira-
tory distress. Even though we can describe it with
different phrases—e.g., "CXR shows a cloudy
patch in the lower lung" or "CXR has
pneumonia"—both statements reflect the same underly-
ing finding. Fig. 5 illustrates this by plotting PROBMED

Method CHD
ZS 2S 4S 8S 16S

CXR-only model performance
MedCLIP [56] 65.4 64.4 68.2 73.8 74.7
CXR-CLIP [61] 73.1 65.1 68.4 73.9 75.2
MEDBind [16] 76.6 56.7 63.4 65.1 69.1
CheXzero [50] 77.1 62.1 67.4 73.8 74.6
BiomedCLIP [62] 61.8 61.2 67.0 69.4 73.7
PCME++ [10] (CXR) 51.1 70.1 72.7 75.6 76.7
PROBMED (CXR) 77.0 71.0 71.9 77.7 79.8
ECG-only model performance
ECG-CLIP [16] 65.7 60.5 71.1 75.0 74.1
MEDBind [16] 65.6 61.7 73.5 73.9 73.5
ECG-FM [37] - 69.4 71.6 72.1 73.9
PCME++ [10] (ECG) 40.3 64.7 74.7 75.9 76.7
PROBMED (ECG) 70.3 64.4 72.2 73.8 76.7
Using both ECG + CXR Models
MEDBind [16] 75.3 68.3 71.7 75.9 78.6
PCME++ [10] 52.4 73.7 76.9 77.7 78.7
PROBMED 78.4 72.4 73.0 79.2 80.8

Table 13. MIMIC-CHD Results

embeddings for the pneumonia CXR and two text descrip-
tions. While a purely deterministic approach (using only µ)
does not reveal the full similarity structure, the probabilistic
embeddings (incorporating µ and ω) cluster the image and
text descriptions together, highlighting the importance of
modeling uncertainty in medical image–text alignment.

G.2. Increasing Uncertainty with Noise
Fig. 6 shows how PROBMED responds to increasing levels
of Gaussian noise injected into a CXR image. Specifically,
we examine the average of the log(ω2) vector across em-



Figure 5. Qualitative visualization of PROBMED embeddings
using PCA for dimensionality reduction. We plot a CXR em-
bedding (depicting pneumonia, a CXR sampled from RSNA
Pneumonia dataset) alongside two distinct TXT embeddings
of "Cloudy patch in the left lung" and "CXR has
pneumonia". In the diagram, probabilistic embeddings provide
the distributions of each embedding, while the deterministic em-
beddings provide the limited interpretation of the ambiguity. Best
viewed in color.

Figure 6. Qualitative visualization of PROBMED embeddings of
a CXR with increasing Gaussian noise added. Uncertainty was
defined and represented as the 1

2 exp(·) average of the log(ω2)
vector across the dimension axis.

bedding dimensions—interpreted as the model’s estimated
uncertainty. As noise increases, log(ω2) also increases, in-
dicating that PROBMED becomes more “uncertain” when
the input is corrupted. This behavior makes intuitive sense
as we imagine that a more pixelated CXR may encapsu-
late many possibilities. Ultimately, PROBMED’s ability to
capture variability in its latent space as it dynamically ad-
justs the mean and variance of its probabilistic embeddings
in response to noisy inputs. Note, empirically, similar ob-
servations were seen with ECG and ECHO; we present the
CXR for simplicity of visualization.

H. Additional Ablations
H.1. Effect of Temperature on Loss
We also varied the temperature hyperparameter within the
different contrastive losses used in the study. We tried dif-
ferent φ parameters for consistency but kept them the same
throughout the model. This was due to the associated com-
putational cost. Herein, we show its impact on multimodal
alignment. As shown in Tab. 14, smaller fixed temperatures

φ
MIMIC-CXR MIMIC-ECG MIMIC-ECHO RSUMR@1 R@5 R@1 R@5 R@1 R@5

Trainable 21.8 59.0 21.3 53.2 2.4 11.4 169.1
0.05 49.3 72.0 46.1 86.2 2.2 6.8 262.6
0.07 47.9 71.4 48.3 87.0 2.4 7.8 264.8
0.2 47.6 71.3 48.2 84.9 2.3 7.6 261.9
1 47.3 70.9 48.2 83.6 2.4 8.0 260.4

Table 14. ϑ examination for PROBMED contrastive losses.

(e.g., 0.05) increase retrieval performance on MIMIC-CXR
and MIMIC-ECG relative to a trainable temperature, while
a moderate temperature (0.07) achieves the highest overall
RSUM. These results suggest appropriately tuning the tem-
perature can significantly influence alignment effectiveness
in contrastive learning.

We aim to explore this phenomenon more in future stud-
ies, particularly by optimizing each temperature. However,
this was not feasible at this time due to computational costs
with hyperparameter tuning.

I. Ethical Considerations
PROBMED employs a probabilistic joint embedding frame-
work to integrate multiple medical modalities and cap-
ture clinically relevant associations. However, it is de-
signed to uncover meaningful relationships within hetero-
geneous medical data. It is essential to rigorously evaluate
the embeddings and their potential implications for clini-
cal decision-making. Our framework builds upon embed-
dings derived from various sources, including curated clin-
ical datasets and publicly accessible medical repositories.
We advocate for continuously scrutinizing probabilistic em-
bedding methods in medical contexts to identify and miti-
gate unintended associations.
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