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Supplementary Material

At first, this supplementary material provides detailed
experimental settings, including data processing procedures,
implementation details for comparison baseline methods,
and evaluation metrics (Sec.1). Subsequently, we provide
further implementation specifics, including the training con-
figurations and rendering process (Sec.3).

In Fig. 1 and Fig. 2, we provide additional visual com-
parisons of our method against state-of-the-art baselines on
DTU [3] and ShapeNet [1] datasets. Moreover, we include
visual results on several scenes from the BlendedMVS [16]
and self-captured data in Fig. 3. It can be observed that
the decomposed reconstructions by our method are more
reasonable and precise, which is believed to be beneficial
for downstream tasks. Our code and data are available at
https://github.com/zhirui-gao/PartGS.

1. More Details on Experiments

1.1. Datasets

We conduct evaluations on two public datasets: DTU [3] and
ShapeNet [1]. DTU is a multi-view stereo (MVS) dataset
comprising 80 forward-facing scenes, each captured with 49
to 64 images. In experiments, we use 15 publicly recognized
scenes commonly adopted in previous studies [2, 7]. We
downsample the images to a resolution of 400 × 300 for
computational efficiency.

To validate the effectiveness of our method in the de-
composition of man-made objects, we construct a subset
of the ShapeNet dataset comprising four categories: Chair,
Table, Gun, and Airplane. Each category includes 15 distinct
objects, providing diverse instances. For each object, we
randomly sample 100 camera poses on a sphere and render
images at a resolution of 400× 400. The rendered images
are equally split into training and testing sets.

Additionally, to explore the potential of PartGS in
handling real-life data, we present qualitative results on
the BlendedMVS dataset [16] and self-captured scenes.
For BlendedMVS, we use official camera poses, while
for self-captured scenes, camera poses are estimated by
COLMAP [12] and normalized using IDR [17]. All images
are resized to 400 × 300 pixels. For the DTU, ShapeNet,
and BlendedMVS datasets, we utilize the ground-truth fore-
ground masks provided within the datasets. For self-captured
real-world scenes, we employ the Segment Anything Model
(SAM) [6] to segment foreground objects.

1.2. Implementation Details on Baselines

We compare our method with four state-of-the-art works
on 3D shape decomposition: EMS [8], MonteboxFinder
(MBF) [11], PartNeRF [13] and DBW [9]. MBF and
EMS are applied to point clouds, utilizing cuboids and su-
perquadrics, respectively, to fit the 3D points. The input point
clouds are sampled from either ground truth 3D shapes (GT)
or meshes reconstructed by state-of-the-art MVS method
Neus [14]. We adhere to the testing procedure outlined by
DBW [9] and randomly sample 5K and 200K points from
the GT meshes as the input for EMS and MBF, respectively.
Similar to our problem setting, PartNeRF and DBW use im-
ages as input to construct structural 3D representations. To
ensure fair comparisons, we discard the pre-defined ground
plane in DBW, as the test scenario consists exclusively of
foreground objects. For PartNeRF, we perform instance-
specific training and set the same number of parts as in our
method, while retaining all other default parameter settings.
Additionally, we compare with SOTA Gaussian Splatting
reconstruction method 2DGS [2], and surface reconstruction
approach Neuralangelo [7], to provide an intuitive evaluation
of the reconstruction quality achieved by our method.

1.3. Evaluation Metrics

We evaluate from 3D reconstruction quality, view synthesis,
shape parsimony, and reconstruction time.

• The 3D reconstruction quality is measured by the offi-
cial Chamfer distance (CD) evaluation [3] between the
recovered geometry and GT, reflecting the accuracy of
3D reconstructions.

• View synthesis uses three standard metrics: Peak Signal-
to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) [15], and Learned Perceptual Image Patch Simi-
larity (LPIPS) [19].

• Shape parsimony is quantified by the number of parts,
while reconstruction time refers to the running time mea-
sured on the same device. While shape parsimony does
not directly indicate the quality of the decomposition, a
smaller number of decomposed components, given consis-
tent reconstruction quality, suggests a more concise and
reasonable decomposition. This is because fitting differ-
ent parts of an object with fewer blocks is inherently more
challenging, whereas utilizing more blocks simplifies the
fitting process.

https://github.com/zhirui-gao/PartGS
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Figure 1. Qualitative comparisons on DTU [3]. We compare our approach with state-of-the-art baselines on the DTU dataset with the
background removed. The last two columns show our block-level and point-level reconstructions, respectively. Our method is the only one
that provides reasonable 3D part decomposition while capturing detailed geometry.

2. Additional Comparative Experiments

Very recently, DPA-Net [18] and GaussianBlock [4] have
achieved advanced 3D shape abstraction. DPA-Net enables
part-aware reconstruction in a feedforward manner, requir-
ing approximately 3 days of GPU training on a pre-collected
dataset and 2 hours per object for inference. GaussianBlock
utilizes SAM [6] to guide superquadric splitting and fusion
for 3D decomposition, with a processing time of 6 hours
per object. We compare our method on DTU and Blend-
edMVS scenes, with results presented in Fig. 4. The pro-
posed approach achieves comparable performance while
demonstrating superior efficiency. It is important to clar-
ify the supervision requirements: DPA-Net is a supervised
method that relies on SAM-generated segmentation masks
for training, whereas GaussianBlock, while not strictly 3D
supervised, depends on high-quality pre-trained datasets that

typically require days of training. Our method distinguishes
itself by being completely self-supervised, requiring neither
3D supervision nor pre-trained components, yet achieving
significantly better computational efficiency.

3. Implementation Details

3.1. Training Configurations

To ensure uniform distributions of 2D Gaussians across sur-
faces of the mesh, random barycentric coordinates are gen-
erated directly within each triangular face. Specifically,
barycentric weights are computed as u =

√
rand and

v = rand. These weights are transformed to obtain α =
[1− u, u(1− v), uv], rand ∈ (0, 1). The sampled position
on triangular face is calculated as o = α0v0+α1v1+α2v2,
where vo, v1, v2 are vertices of the triangle. This method
compensates for the non-uniformity caused by the triangle’s
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Figure 2. Qualitative comparisons on ShapeNet [3]. We compared our approach with state-of-the-art baselines across four categories. The
last two columns display our block-level and point-level reconstructions, respectively. Our method uniquely provides reasonable 3D part
decomposition while simultaneously capturing detailed geometry.

geometry. Unlike naive random sampling which results in
uneven distributions, it ensures that the sampled points are
evenly distributed across mesh surfaces.

The same hyperparameters are used for all experiments.
We set the initial number of primitives M to 8. In the hybrid
representation, each superquadric mesh is a level-2 icosphere
(320 triangular face). Each triangular face contains 100
Gaussians, with a scaling parameter c of 0.1. The number of

sampled points in each ray is 2048.

During refinement, we employ regularization in 2DGS
to achieve better geometric reconstruction, including depth
distortion maps, depth maps, and normal maps. Additionally,
we introduce a mask cross-entropy to filter out extra noise
Gaussians. To extract the meshes from 2D Gaussians, we use
truncated signed distance fusion (TSDF) to fuse rendered
depth maps, utilizing Open3D [20].
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Figure 3. Qualitative results on BlendedMVS [16] and self-capatured data. We demonstrate the RGB renderings and decomposed parts
from novel views across a variety of objects. The first five examples are from the BlendedMVS dataset, and the remaining examples are
from our own captured scenes.

3.2. Rendering

With Gaussians attached to the surface of each block, we
achieve view-dependent rendering through tile-based rasteri-
zation as Gaussian Splatting [2, 5]. Given a view, Gaussians
on the superquadric surface are projected onto the image
space, forming an RGB image. Initially, the screen space de-
termines the bounding box for each Gaussian. Subsequently,
these Gaussian ellipses are sorted according to their depths
of center to the image plane. Finally, volumetric alpha com-

positing [10] is utilized to integrate the alpha-weighted RGB
values for each pixel.

To formulate the process, considering a viewing transfor-
mation W , the covariance matrix Σ

′

i of i-th Gaussian in the
camera coordinate system is calculated by:

Σ
′

i = JWΣWTJT , (1)

where J is the Jacobian of the affine approximation of the
projective transformation, and Σ is the covariance matrix
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Figure 4. Qualitative comparisons to DPA-Net and Gaussian-
Block. The first two examples are from the DTU dataset, and the
last two examples are from the BlendedMVS dataset.

of the Gaussian ellipse. Note that the last row and column
of Σ are omitted since we adopt 2D Gaussians. Following
alpha compositing, we first calculate an alpha value for each
Gaussian ellipse:

αi = τi exp(−
1

2
(x− ui)

TΣ
′

i−1(x− ui))). (2)

Here, ui is the center coordinate of the projected Gaussian
ellipse, and τi is the opacity of the block where the i-th Gaus-
sian is located. The calculated alphas are sorted according
to their depths from the image plane. Meanwhile, we can
acquire the color value ci from the spherical harmonics of
N ordered points, thus obtaining the rendering RGB value:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αi). (3)

This process is differentiable and can optimize the hybrid
representation through gradient descent.
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