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Supplementary Material

A. Implementation Details

Mesh sampling for 3DGS. In the main text Sec. 3.2,
we sample surface points from coarse mesh as 3DGS [8]
initialization. Specifically, we render depth maps of train-
ing viewpoints using the coarse mesh and sample 5k points
from each depth map. Then, we unproject the depth points
into 3D color points. These points are then fused to gener-
ate a total of 50k points, which are subsequently combined
with the sparse results from COLMAP [7].

3DGS training details. For 3DGS [8] training, conver-
gence is achieved effectively with 7k iterations under sparse
inputs. Specifically, densification begins at 500 iterations
with intervals of 100 iterations. An opacity reset is per-
formed at 3k iterations, while other parameters remain con-
sistent with the original implementation. To ensure a fair
comparison, other GS-based methods tested in the paper
also follow this training strategy.

Camera position. Camera pose refers to the camera’s po-
sition c and orientation matrix R in the world coordinate
system. The proposed two methods in the main text Sec.
3.3 (Camera position perturbation and interpolation) focus
exclusively on resampling camera positions while ensuring
that the camera orientation consistently points toward the
center of the object, located at (0, 0, 0) in the world coordi-
nate system.

B. More Experimental Results

B.1. Results on different sparsity levels.

To better understand the strengths and weaknesses of the
SDF-based and 3DGS-based methods, we evaluate them
under varying levels of sparse input. Specifically, we select
9 scenes from the MobileBrick dataset [3], and the reported
results are averaged across all scenes. Table 1 presents re-
sults across different sparsity levels. 3DGS-based methods
(e.g., GOF[14]) significantly outperform SDF-based meth-
ods (e.g., Voxurf[9]) in novel view rendering, while Vox-
urf consistently achieves better surface reconstruction than
GOF. We hypothesize that this stems from SDF’s dense rep-
resentations, which effectively capture global geometry, and
3DGS’s sparse representations, which excel at preserving
local details. To leverage the strengths of both approaches,
we propose a hybrid method, leading to our proposed Sur-
faceSplat framework.

Table 1. Rendering and mesh reconstruction results on SDF-based
and GS-based methods with different input image numbers.

Rendering (PSNR) Mesh (F1 Score)

Input Voxurf[9] GOF[14] Voxurf[9] GOF[14]

5 11.78 12.61 31.70 30.15
10 14.06 16.00 63.60 53.64
15 14.90 18.30 66.82 60.20
20 15.83 19.81 70.39 65.86
30 16.93 21.43 71.97 68.25

B.2. Per-scene 10-view mesh results on Mobilebrick

Table 2 presents the surface reconstruction results (F1
scores) for each MobileBrick scene, using 10 input images
per scene for surface reconstruction. The best scores are
highlighted in bold.

B.3. Per-scene 3-view reconstruction mesh on DTU

Previous methods [12, 13] use 3 manually selected images
with the best overlap for surface reconstruction. However,
we argue that this does not reflect real-world reconstruc-
tion scenarios. Instead, we propose evenly sampling 5 im-
ages for sparse-view reconstruction. Nonetheless, we also
report results under the 3-view setting for fair comparison
with previous methods. Table 3 presents the results, demon-
strating that our method outperforms existing alternatives.
Furthermore, our framework is compatible with a variety of
SDF-based methods and 3D Gaussian representations. In
addition to integrating Voxurf into our pipeline, we also ex-
periment with incorporating SparseCraft, and observe simi-
larly strong reconstruction performance, demonstrating the
generality and versatility of our approach.

B.4. SDF-3DGS Mutual Enhancement.

Our method enables mesh reconstruction and 3DGS to en-
hance each other’s performance. Table 4 presents the ab-
lation study results on MobileBrick, demonstrating the ef-
fectiveness of this mutual enhancement. The results show
that without support from the other module, performance
drops significantly for both components. Additionally, we
analyze the impact of cyclic optimization in our method.
Running two cycles provides a slight performance improve-
ment. However, for a trade-off between efficiency and per-
formance, we use a single loop iteration as the default set-
ting.



Figure 1. Ablation study on mesh-based sampling for enhancing 3DGS rendering. We report foreground PSNR here.

Table 2. Quantitative F1 score (↑) across all 18 MobileBrick test scenes.

F1 Score Aston Conv. Ferrari Jeep Bus Moto. Porsche Beetles Big ben Boat Audi Bridge Cabin Camera Castle Colosseum Satellite Shuttle Mean Time

Voxurf [9] 55.8 53.1 69.4 88.0 58.7 88.2 59.7 64.8 55.0 60.6 83.1 67.9 78.4 91.0 11.5 22.3 61.7 60.9 62.9 55 mins

MonoSDF [13] 51.2 42.6 56.9 31.4 13.8 54.5 40.1 36.9 2.3 4.8 60.2 67.5 76.3 25.6 4.9 4.7 38.9 49.5 36.8 6 hrs

2DGS [1] 42.8 36.5 62.1 71.7 34.9 51.6 39.3 47.2 28.4 67.8 73.9 81.2 62.5 43.7 17.3 18.9 4.6 40.8 45.8 10 mins

GOF [14] 55.7 48.3 67.8 70.2 46.4 73.5 50.9 62.7 42.3 71.9 77.2 78.6 73.8 53.4 13.6 26.5 33.8 50.2 55.4 50 mins

Ours 60.8 58.9 70.1 86.5 67.3 89.8 62.4 76.4 62.3 81.5 80.9 94.3 80.6 91.4 17.8 32.1 73.5 64.7 69.0 1 hr

B.5. Efficacy of mesh-based sampling for 3DGS
Fig. 3 (e)&(f) in main paper provide a visual compari-
son between our mesh-based point sampling approach and
COLMAP-generated sparse points. The comparison shows
that our method achieves noticeably better visual quality
in object regions, which leads to enhanced 3DGS render-
ing quality. The results across each scene on MobileBrick
are summarized in Fig. 1. This demonstrates the effective-
ness of our mesh cleaning and normal loss in enhancing
3DGS [8] rendering quality.

B.6. Efficacy of 3DGS for mesh reconstruction
Sec. 3.3 in the main text mentioned that 3DGS [8] can pro-
vide higher-quality novel view images, as extended views,
are combined with the original inputs to refine the mesh.
Specifically, we propose two novel view pose strategies, and
we visualize the resulting novel view images in Fig. 2.

B.7. Visual reconstruction on BlendedMVS
We performed mesh reconstruction using 3-view input on
the BlendedMVS dataset [10]. Fig. 3 presents the results,
comparing our method with two representative approaches:
Voxurf (SDF-based) and 2DGS (3DGS-based). While none

of the methods perform well in this setting, our approach
achieves slightly better results than the alternatives. We hy-
pothesize that 3 input views are insufficient for real-world
surface reconstruction, highlighting the challenges of ex-
treme sparsity.

C. More Qualitative Results

C.1. DTU rendering results

We visualize and compare the novel view synthesis results
of our method (based on SparseCraft) against the original
SparseCraft on the DTU dataset under sparse input settings
of 3, 6, and 9 views.

C.2. Mesh reconstruction on Mobilebrick and DTU

Fig. 5 Presents additional mesh reconstruction results on
MobileBrick (10 images) and DTU (5 images). Training
images are uniformly sampled to minimize overlap, making
the task more challenging and reflect the real-world recon-
struction problem.



Table 3. Quantitative results of 3-view reconstruction on DTU. Chamfer Distance (mm)↓ is reported. Note that SparseNeuS requires per-
taining on large-scale dataset and ground-truth masks at inference time. The best results are bolded, while the second-best are underlined.

Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time

Voxurf [9] 3.75 6.02 4.56 3.62 4.53 2.80 3.79 4.23 4.26 2.09 4.40 4.44 1.36 4.60 2.51 3.79 50 mins

MonoSDF [13] 6.76 3.50 1.79 0.73 1.95 1.45 1.25 1.63 1.40 0.98 4.03 1.75 0.94 2.54 3.55 2.28 6 hrs

SparseNeuS [5] 4.10 4.21 3.64 1.78 2.89 2.49 1.76 2.50 2.88 2.16 2.04 3.27 1.29 2.36 1.75 2.61 Pretrain + 2 hrs ft

VolRecon [6] 3.56 4.48 4.24 3.15 2.85 3.91 2.51 2.65 2.56 2.67 2.84 2.77 1.60 3.09 2.19 3.00 2days pre

ReTR [4] 3.78 3.91 3.95 3.15 2.91 3.50 2.79 2.76 2.50 2.35 3.56 4.02 1.70 2.72 2.16 3.05 3days pre

SparseCraft [11] 2.13 2.83 2.68 0.70 1.49 2.15 1.29 1.37 1.57 1.13 1.22 2.53 0.61 0.83 0.99 1.57 1.5 hours

Ours(Voxurf) 2.65 4.47 1.87 1.22 2.28 1.98 1.33 1.96 2.66 1.94 1.86 1.67 0.78 1.22 1.63 1.96 1hour
Ours(SparseCraft) 1.86 2.56 2.85 0.75 1.40 1.99 1.13 1.42 1.51 0.90 1.28 2.26 0.68 0.89 0.94 1.49 2 hours

Table 4. Ablations studies on effectiveness of our proposed mod-
ules on MobileBrick test scenes.

Meshing Rendering

F1↑ CD↓ PSNR↑ PSNR-F↑

SDF-based method w/o 3DGS 62.42 13.3 14.34 18.34
3DGS-based method w/o SDF 54.96 11.0 16.52 18.36

Ours (One cycle) 68.97 9.7 17.48 20.45
Ours (Two cycles) 69.14 9.9 17.58 20.55
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Figure 2. Visualization of newly rendered images with differ-
ent pose expansion strategies. The top row presents results on
DTU [2] (scan63), while the bottom row shows results on Blend-
edMVS [10] (Man).
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Figure 3. Qualitative comparison of 3-view mesh reconstruction
on BlendedMVS dataset.
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Figure 4. DTU novel view synthesis comparison.

C.3. MobileBrick rendering results
Fig. 6 presents additional novel view renderings on Mobile-
Brick, demonstrating that our method achieves superior ren-
dering quality. This improvement stems from the stable ini-
tialization point cloud provided by the coarse mesh.
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Figure 5. More qualitative mesh reconstruction results on MobileBrick and DTU.
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Figure 6. More qualitative novel view rendering results on MobileBrick.
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