
Superpowering Open-Vocabulary Object Detectors for X-ray Vision
Supplementary Material

This supplementary material is organized into the follow-

ing sections: Supp. A outlines ethical considerations related

to our work; Supp. B provides the reproducibility state-

ment; Supp. C describes the main characteristics and con-

struction process of our proposed dataset, DET-COMPASS;

Supp. D presents additional technical implementation de-

tails of RAXO; Supp. E and Supp. F offer further analyses

of RAXO’s effectiveness; and Supp. G and Supp. H present

insights into its performance through qualitative examples.

A. Ethics Statement

We do not anticipate any immediate negative societal impact

from our work. However, we encourage future researchers

building upon this study to exercise the same level of caution

we have maintained, recognizing that RAXO has the poten-

tial to be applied for both beneficial and harmful purposes.

The primary motivation behind our research is to en-

hance open-world perception in X-ray prohibited object de-

tection, addressing the growing diversity of objects in se-

curity screening. By improving detection capabilities, our

work aims to strengthen public safety in critical security

scenarios. Notably, the proposed pipeline and model can

be executed entirely on local systems, ensuring that user or

institutional privacy remains well protected.

For evaluation, we rely on publicly available, well-

established benchmarks, strictly adhering to their licensing

terms. Regarding the new DET-COMPASS benchmark in-

troduced in this work, we source images from the publicly

available COMPASS-XP [9] X-ray classification dataset,

complying fully with its license. Our contribution lies in pro-

viding additional bounding box annotations to COMPASS-

XP through our human annotation efforts. Importantly, we

do not introduce or collect any new images. The human

annotation process for DET-COMPASS was conducted fol-

lowing the approval of our institution’s ethics board after a

thorough committee review.

Lastly, for web-retrieved images, we only retain those

explicitly permitted for non-commercial use in this project.

Each retrieved image was manually reviewed, ensuring that

none contain private information such as human faces or

vehicle license plates. We will release our proposed bench-

mark and prototypes under an appropriate license.

B. Reproducibility Statement

Upon publication, we will make all necessary resources

available to facilitate the full reproduction of our exper-

imental results. This includes the source code, precise

prompts, and benchmark datasets with their splits. Our pro-

posed framework, RAXO, is developed using open-source,

Figure 6. Occluded RGB object. In this pair of images, the object

lens is completely occluded in the RGB image, preventing the

annotation of a bounding box

Figure 7. Visibility attribute. In (1), the cardigan

does not have a discernible signature in the X-ray spec-

trum, thus visible=False. In (2), the hacksaw does, so

visible=True.

publicly accessible models and data, reinforcing its repro-

ducibility. A comprehensive breakdown of our pipeline’s

construction is provided in Sec. 5. Additionally, our supple-

mentary material offers further implementation specifics, in-

cluding the exact prompts, to assist practitioners in replicat-

ing our approach effortlessly. By offering detailed method-

ological explanations, extensive experimental results, and

a fully open-source framework and data, we aim to ensure

that our work is easily reproducible, empowering researchers

and practitioners to adapt our method across diverse appli-

cations.

C. DET-COMPASS Details

To construct our new DET-COMPASS dataset, we sourced

images from the publicly available COMPASS-XP [9]

dataset. Both the images and their metadata are licensed

under the Creative Commons Attribution 4.0 International



Figure 8. Examples from our DET-COMPASS dataset, showing RGB-X-ray pairs with annotated bounding boxes.

License, permitting unrestricted use for research and com-

mercial applications. COMPASS-XP comprises 1,928 im-

age pairs, each consisting of an X-ray image captured with a

Gilardoni FEP ME 536 scanner and a corresponding natural

image taken with a Sony DSC-W800 digital camera. A key

limitation of COMPASS-XP is that it provides only classi-

fication labels and the (RGB X-ray) pairs are not spatially

aligned.

Our DET-COMPASS dataset builds upon COMPASS-XP

by extending the annotations with manually labeled bound-

ing boxes (Fig. 8). The annotation process was conducted by

hiring three experts, each responsible for labeling 50% of the

RGB-X-ray pairs. To ensure accurate alignment between the

RGB and X-ray images, each expert annotated both modal-

ities simultaneously. After completing their respective sets,

all three experts reviewed the annotations collectively. One

of them acted as a middle ground, overseeing the review

process and resolving any remaining discrepancies to en-

sure annotation consistency.

In total, DET-COMPASS comprises 3,856 annotated im-

ages, including 1,928 X-ray and 1,928 RGB images. The

average annotation time per image, regardless of modality,

was 20 seconds. Given that each expert annotated half of the

dataset, the total annotation time amounted to 32.13 hours.

The review process required an additional 3 seconds per im-

age, and since all experts participated in reviewing the entire

dataset, the total review time was 9.64 hours.

The total number of annotated objects (bounding boxes)

in the X-ray images is 1,907, while in the RGB images, it

is 1,870. This discrepancy arises because some objects are

occluded in the RGB modality, making their localization

impossible (Fig. 6). Each annotated object in the X-ray

modality includes a visibility attribute, indicating whether it

produces a discernible signature in the X-ray spectrum. An

example of an object marked as visible is shown in Fig. 7(2),

while an example of an object marked as non-visible is

presented in Fig. 7(1). DET-COMPASS comprises a total

of 370 object classes (detailed in Tab. 11), of which 307

contain at least one annotated visible object.

Finally, DET-COMPASS avoids long-tail distribution is-



sues thanks to its uniformly distributed categories, with a low

Gini coefficient of� = 0.26 (e.g., MS-COCO has� = 0.57,

where higher � indicates bigger long-tail bias).

D. Further Implementation Details of RAXO

D.1. Pseudo­code of RAXO

In Algorithm 1, we present the pseudocode for the core im-

plementation of RAXO, detailing both the construction of

visual descriptors and their use to classify detector propos-

als.

D.2. Material­Transfer Mechanism

To construct the material databaseM, we cluster Cin-house

into groups of materials identified by a large language model

(LLM). The average appearance of objects within each group

is used as an estimator of the corresponding material. To

perform this clustering, we utilize GPT-4 with the prompt

specified in Tab. 12(1).

Once the material database is computed, it can be used to

adapt RGB objects to the X-ray modality by inpainting them

with their expected material. These expected materials are

retrieved fromM using an LLM with the prompt provided

in Tab. 12(2).

Material database construction when Din-house
XRAY

= ∅.

When no samples are available fromDin-house
XRAY

, we construct

our material database using the standardized color scheme

of security X-ray scans. These scans operate by irradiating

objects with X-rays and rendering them in pseudo-colors

based on their spectral absorption rates. Typically, three

primary pseudo-colors are used [1, 33]: orange for organic

substances (e.g., food, explosives), green for inorganic ma-

terials (e.g., laptops, smartphones), and blue for metals (e.g.,

knives, guns). We leverage this modality knowledge to build

our material database around these three broad materials.

D.3. Web­retrieval Details

To retrieve images from the web, we utilize the Google

Custom Search API [8], configuring specific query pa-

rameters to refine the results. We set the search type to

images (searchType: image) and restrict the results

to photos (imgType: photo) in common JPEG and

PNG formats (fileType: jpg|png). To ensure rele-

vance, we limit searches to English-language sources (lr:

lang_en) and prioritize images from the past seven years

(dateRestrict: y7).

D.4. In­domain Descriptor Details

In-domain descriptors from Din-house
XRAY

are built offline by

combining the training sets from the six evaluation datasets

(PIXray [19], PIDray [34], CLCXray [42], DvXray [20],

Algorithm 1: Pseudo-code of RAXO.

Input: vocabulary Ctest; OvOD detector F; test image I;

in-house database Din-house
XRAY

; web-database Dweb
RGB

Output: Detections T of image I

1 Initialization: T ← ∅

2 Initialization: X ← ∅

3 Initialization: X16 ← ∅

4 M = �A40C4"0C4A80;�0C010B4 (Din-house
XRAY

)

/* Visual class descriptors construction */

5 for class 2 ∈ Ctest do

/* VSA refers to the Visual samples

acquisition pipeline */

6 GXRAY
2 ← +(�(2, Din-house

XRAY
)

7 if GXRAY
2 is ∅ then

8 G̃web
2 ← +(�(2, Dweb

RGB
)

9 Gweb
2 = Filter( G̃web

2 , F, 2, g )

10 A2
< = �4C"0C4A80;�??0A40=24 (M, 2)

11 for sample u ∈ Gweb
2 do

/* Ω denotes segmentation */

12 ũ = Ω(u) ⊙ (A2
< · 1)

13 GXRAY
2 ← GXRAY

2 ∪ {ũ}

14 end

15 end

/* Visual class modeling */

16 X2 ← ∅

17 for sample I ∈ GXRAY
2 do

18 x
pos

I
= �@. (3)

19 x
neg

I
= �@. (4)

20 X2 ← X2 ∪ {x
pos

�
}

21 X16 ← X16 ∪ {x
neg

�
}

22 end

23 X2 ← X2 ∪ {�E6 (X2 ) }

24 X ← X ∪ X2

25 end

/* Detection on image I */

26 I = F | Φ'%# (I)

27 Ctest′ ← Ctest ∪ {background}

28 for proposal zm ∈ I do

29 ˆ2< ← arg max
2∈Ctest′ max

X82 ∈X2
⟨z<, X8

2 ⟩

30 b̂m ← F | Φ'�� (zm )

/* DCC refers to the Descriptor

Consistency Criterion */

31 if ˆ2< is not background and ��� (zm, X) then

32 T ← { ˆ2< ∪ b̂m}

33 end

34 end

35 Return: T

HiXray [30], and DET-COMPASS) and removing overlap-

ping categories. Combining the datasets ensures a fair

evaluation through dataset-agnostic prototypes that capture

generic concepts, rather than dataset-specific representa-

tions.



D.5. Dataset Colorization

We do not perform color adjustments across datasets, as

most do not provide raw density values. However, this does

not adversely affect RAXO, since the colorization strate-

gies follow manufacturer-specific yet consistent palettes that

use similar colors to represent the same materials. These

mappings, while differing slightly in hue or intensity, con-

sistently represent the material-specific density and spatial

structure necessary for robust detection. Notably, our DET-

COMPASS also includes raw density values, enabling more

flexible experimentation in future work.

D.6. Complexity Analysis

RAXO is designed to adapt off-the-shelf RGB OvOD meth-

ods to X-ray without training, making it inherently modular.

Importantly, most of its components run offline only once to

build the visual descriptors, requiring roughly 0.7s per class

on an NVIDIA A100 GPU. At inference, RAXO simply re-

places the text-based classifier of the base OvOD detector

with its visual-based classifier, introducing negligible over-

head (e.g., 3ms/sample on G-DINO) with complexity O(=)

w.r.t. the number of categories.

E. Extended Experimental Results

Maintaining the same experimental setup as in Sec. 6.1, we

extend our main results to report AP, AP50, and AP75. Ad-

ditionally, since the experiments are repeated three times

with different random distributions of in-domain and web

categories for the intermediate gallery settings, we also re-

port the standard deviation. Tab. 8 show the results. The

low standard deviations, combined with RAXO’s consistent

improvement over all baselines, further validate the effec-

tiveness of RAXO in adapting off-the-shelf open-vocabulary

detectors to the X-ray modality.

To validate RAXO with an LLM-guided DETR, we also

integrated it into LaMI-DETR [4], yielding consistent im-

provements across all settings (Tab. 9). Finally, to show that

the large models in RAXO can be removed or replaced to

achieve a desired balance between efficiency and precision,

we present an additional ablation in Tab. 10.

F. Per-class AP

Table 6 shows per-class AP on the PIXray dataset for G-

DINO. RAXO consistently improves performance, espe-

cially on challenging categories with low baseline scores

such as Pressure Vessel (↑52.3), and Hammer (↑54.8). In

Tab. 7, we extend the per-category analysis to the DET-

COMPASS dataset, analyzing the top-5 classes with the

highest and lowest performance gains. RAXO excels on

items with distinctive shapes or strong cross-modal color

shifts, while struggling with generic-shaped objects that pro-

vide limited cues under X-ray.

Category G-DINO G-DINO+RAXO

Pressure Vessel 0.5 52.8 ↑52.3

Bat 70.7 69.7 ↓−1.0

Gun 31.3 53.6 ↑22.3

Scissors 29.6 44.3 ↑14.7

Razor Blade 0.9 18.1 ↑17.2

Pliers 12.4 43.5 ↑31.1

Dart 0.4 32.0 ↑31.6

Knife 6.2 10.3 ↑4.1
Fireworks 0.0 2.1 ↑2.1
Battery 5.9 47.7 ↑41.8

Saw Blade 3.2 23.9 ↑20.7

Hammer 1.3 56.1 ↑54.8

Screwdriver 1.0 19.9 ↑18.9

Wrench 28.2 52.3 ↑24.1

Lighter 2.0 26.8 ↑24.8

Average 12.9 36.9 ↑+24.0

Table 6. Per-category AP comparison on the PIXray [19] dataset

for G-DINO [18]. RAXO significantly boosts performance across

nearly all categories, particularly those with low G-DINO baseline

scores.
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G-DINO 0.0 0.1 0.1 0.2 3.0 7.5 1.0 16.7 14.3 1.3

+ RAXO 0.7↑0.7 1.3↑1.2 1.3↑1.2 2.6↑2.4 4.2↑1.1 88.9↑81.4 90.1↑89.1 98.2↑81.5 98.9↑84.6 99.1↑97.8

Table 7. Per-category AP on DET-COMPASS for the top-5

classes with the highest and lowest performance gains. We report

AP for G-DINO [18] and G-DINO+RAXO across categories.

G. Qualitative Analysis of the Material Trans-

fer Mechanism

The core challenge that RAXO faces is tackling the domain

gap between RGB and X-ray images without training or fine-

tuning. The specific component we develop for this purpose

is our material-transfer mechanism, whose results compared

to a diffusion-based method [7] can be found in Fig. 9.

H. Qualitative Analysis of RAXO

Fig. 10 presents qualitative visualizations of detected X-

ray objects before and after applying RAXO with Ground-

ingDINO [18] on the PIXray [19] dataset. For proper vi-

sualization, we display detections with a confidence score

higher than 0.15 in both cases. These images lead to two key

conclusions: (1) RAXO significantly improves the classifi-

cation of detected proposals. In the baseline images, many

objects are correctly localized but misclassified. RAXO suc-

cessfully corrects these misclassifications by constructing

robust visual descriptors. (2) The use of both background

descriptors and the Descriptor Consistency Criterion (DCC)

effectively eliminates false positives that do not correspond

to actual X-ray objects. These observations strongly support

the reliability of RAXO.



G Method PIXRAY PIDRAY CLCXray COMPASS-XP HiXray DVXray

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

G-DINO [18] 12.9 14.9 13.4 10.9 13.6 11.7 6.7 8.4 7.1 13.4 14.2 13.9 7.0 10.8 8.2 10.0 11.2 10.4

D
in
-h

X
R
A
Y

D
w
eb

RG
B

100/0 36.9 45.0 39.0 16.5 21.4 17.9 22.2 29.6 24.4 47.9 54.2 48.8 17.1 27.2 19.4 22.6 26.6 24.1

80/20 33.8±0.6 40.9±0.9 35.5±0.6 15.4±0.4 19.8±0.6 16.6±0.4 18.0±2.1 23.7±2.3 19.5±2.2 41.0±2.2 46.2±2.4 41.7±2.2 14.5±0.6 23.5±1.0 16.3±0.6 21.0±0.6 24.8±0.9 22.3±0.6

50/50 + RAXO 25.4±2.0 31.2±1.9 26.7±2.0 15.5±0.9 19.8±1.0 16.8±1.0 17.0±1.8 22.9±3.2 18.7±2.3 31.4±0.7 35.3±0.9 32.1±0.6 13.4±0.1 21.3±0.1 15.3±0.2 16.1±1.8 18.8±2.3 17.0±2.0

20/80 21.6±0.6 26.1±1.1 22.6±0.6 13.9±0.5 17.9±0.7 14.9±0.6 10.0±0.4 13.1±1.5 10.7±0.7 20.5±0.6 22.9±0.7 21.1±0.7 9.8±1.0 15.8±1.4 11.1±1.2 15.0±1.0 17.2±1.1 15.8±1.2

0/100 16.1 19.8 16.8 13.4 17.1 14.3 7.1 9.7 7.5 14.0 15.4 14.5 7.9 13.0 8.7 12.4 14.1 12.9

Detic [44] 9.3 11.6 9.5 7.1 9.7 7.6 4.7 7.3 4.6 11.5 13.4 13.3 4.8 8.6 5.2 7.0 8.5 7.5

D
in
-h

X
R
A
Y

D
w
eb

RG
B

100/0 27.3 34.5 28.2 11.3 15.8 12.2 14.0 20.6 14.7 35.3 39.9 35.4 14.2 23.9 15.5 19.4 23.9 21.2

80/20 23.9±1.3 30.2±1.5 24.6±1.3 10.8±0.1 15.0±0.2 11.7±0.1 12.3±1.6 18.1±1.8 12.8±1.9 30.7±1.4 34.4±1.3 30.8±1.5 12.1±1.1 20.8±1.8 13.1±1.2 18.0±2.2 22.1±2.6 19.7±2.4

50/50 + RAXO 19.5±1.6 24.8±1.9 20.1±1.7 10.3±0.3 14.3±0.3 11.0±0.3 9.2±1.2 13.5±2.3 9.5±1.2 24.4±2.7 27.1±2.7 24.8±2.6 11.0±0.9 18.9±1.3 11.9±1.2 14.6±1.1 17.9±1.2 15.9±1.2

20/80 15.2±0.9 19.4±0.9 15.5±1.0 9.6±0.1 13.3±0.2 10.3±0.2 8.0±0.1 12.5±0.1 8.0 16.4±1.0 18.3±1.0 16.4±1.0 9.9±0.8 16.8±1.4 10.7±0.9 12.7±0.6 15.5±0.8 13.9±0.7

0/100 13.4 16.8 13.6 9.1 12.6 9.8 5.2 8.1 5.1 11.9 13.1 12.1 7.9 13.8 8.4 9.4 11.4 10.1

CoDet [21] 7.3 8.7 7.6 5.7 7.6 6.2 3.1 5.7 2.7 8.4 8.9 8.7 3.4 5.9 3.7 5.6 6.8 6.0

D
in
-h

X
R
A
Y

D
w
eb

RG
B

100/0 27.9 33.6 29.2 10.3 14.6 10.9 14.8 22.4 15.9 35.8 41.0 36.7 13.2 22.0 14.8 17.6 21.7 19.0

80/20 25.1±1.5 30.2±1.7 26.2±1.7 9.5±0.3 13.4±0.5 10.1±0.3 12.0±1.9 18.3±2.8 12.7±2.1 32.2±0.9 36.5±1.5 33.1±0.6 11.7±1.3 19.4±2.2 13.2±1.5 15.4±1.4 18.8±1.7 16.7±1.6

50/50 + RAXO 20.0±0.7 24.1±0.9 20.8±0.7 9.5±0.5 13.4±0.7 10.1±0.5 9.2±1.4 14.2±2.1 9.6±1.7 24.0±0.2 26.7±0.3 24.7±0.2 9.9±0.4 16.7±0.8 11.1±0.4 11.5±0.8 14.2±1.1 12.4±0.8

20/80 14.8±2.4 17.8±2.8 15.3±2.5 8.5±0.3 11.9±0.4 9.0±0.4 5.1±1.4 9.0±2.5 5.0±1.6 17.8±0.7 19.4±0.9 18.2±0.6 8.1±0.6 13.8±1.0 8.8±0.6 9.4±1.5 11.3±1.8 10.1±1.6

0/100 11.5 14.0 11.9 8.1 11.3 8.7 4.0 7.1 3.8 12.2 13.0 12.6 6.5 11.2 7.1 6.9 8.3 7.5

VLDet [15] 9.8 12.1 10.3 6.9 9.4 7.4 4.4 7.8 4.0 10.6 11.4 10.8 5.1 9.0 5.5 7.4 9.2 8.1

D
in
-h

X
R
A
Y

D
w
eb

RG
B

100/0 32.3 40.1 34.0 11.7 16.8 12.6 15.4 23.3 15.9 36.4 41.4 37.2 14.8 24.5 16.3 20.1 25.1 22.0

80/20 29.2±1.2 36.3±1.2 30.7±1.3 11.0±0.3 15.7±0.3 11.7±0.3 12.7±0.5 19.6±1.2 13.0±0.5 31.8±0.8 36.0±1.0 32.5±0.9 13.1±1.2 21.8±1.9 14.3±1.3 16.8±0.2 21.0±0.1 18.4±0.1

50/50 + RAXO 24.0±1.5 29.9±1.7 25.2±1.5 10.4±0.7 14.6±1.0 11.1±0.8 11.1±1.1 16.9±0.4 11.5±1.7 23.7±0.9 26.5±0.8 24.3±1.1 11.2±1.5 19.0±2.1 12.1±1.9 12.1±0.5 15.0±0.4 13.2±0.4

20/80 21.6±1.0 26.8±0.9 22.6±1.0 9.4±0.3 13.3±0.4 10.1±0.3 5.2±0.1 9.1±0.2 4.8±0.0 16.2±0.9 18.2±1.2 16.6±1.0 9.3±0.2 15.9±0.2 9.9±0.3 10.6±0.5 13.1±0.6 11.5±0.5

0/100 14.1 17.8 14.5 8.9 12.5 9.5 4.4 8.1 3.9 11.1 12.2 11.4 8.3 14.5 8.7 9.0 11.0 9.8

Table 8. X-ray OvOD performance under the Cross-Modality Transfer Evaluation (CMTE) setting on DET-COMPASS (ours),

PIXray [19], PIDray [34], CLCXray [42], DvXray [20], and HiXray [30] datasets. We integrate RAXO into different baselines using

different gallery G compositions, from using only Din-house
XRAY

data (100/0) to exclusively DF41
RGB

samples (0/100). RAXO consistently

improves the performance of all baseline OvOD detectors across every dataset. We report the AP, AP50 and AP75. We also include the

deviations because each experiment is repeated three times with different random distributions of in-domain and web categories for the

intermediate gallery settings.

RGB Diffusion Mat. trans. GT X-ray

RGB Diffusion Mat. trans. GT X-ray

Figure 9. Qualitative comparison between our material-transfer mechanism and a diffusion-based method [7].

G Method D-COMP. PIXray PIDray CLCXray DvXray HiXray

LaMI-DETR 11.3 13.6 8.0 4.0 9.7 6.3

100/0 31.9↑20.6 25.7↑12.1 13.1↑5.1 18.7↑14.7 18.1↑8.4 9.7↑3.4
80/20 27.2↑15.9 23.2↑9.6 12.0↑4.0 16.2↑12.2 16.0↑6.3 8.3↑2.0
50/50 + RAXO 22.0↑10.7 15.9↑2.3 12.1↑4.1 15.1↑11.1 12.8↑3.1 7.6↑1.3
20/80 15.7↑4.4 15.2↑1.6 10.8↑2.8 6.8↑2.8 11.9↑2.2 7.0↑0.7
0/100 11.5↑0.2 14.8↑1.2 10.8↑2.8 6.2↑2.2 10.5↑0.8 6.5↑0.2

Table 9. X-ray OvOD performance under the Cross-Modality

Transfer Evaluation (CMTE) setting on DET-COMPASS (ours),

PIXray [19], PIDray [34], CLCXray [42], DvXray [20], and

HiXray [30] datasets. We integrate RAXO into LaMI-DETR [4]

using different gallery G compositions, from using only Din-house
XRAY

data (100/0) to exclusivelyDF41
RGB

samples (0/100). RAXO consis-

tently improves the performance of LaMI-DETR.

Segment. LLM Features
PIXray (50/50)

AP AP50 AP75

G-DINO [18] 12.9 14.9 13.4

+ RAXO

SAM 2 GPT-4 DINOv2 25.4↑12.5 31.2↑16.3 26.7↑13.3

– GPT-4 DINOv2 22.0↑9.1 27.3↑12.4 22.7↑9.3
SAM 2 – DINOv2 20.8↑7.9 24.1↑9.2 21.4↑8.0
SAM 2 GPT-4 DINO 22.2↑9.3 27.6↑12.7 22.9↑9.5
SAM 2 LLaMA-3 DINOv2 24.7↑11.8 30.1↑15.2 26.1↑12.7

SAM GPT-4 DINOv2 25.1↑12.2 31.0↑16.1 26.4↑13.0

Table 10. Ablation study of RAXO components on the

PIXray [19] dataset (50/50 setting). We integrate RAXO into G-

DINO and analyze the impact of segmentation models, language

models, and visual features. Results show that each component

incrementally boosts performance, with the full RAXO configura-

tion yielding the best results.



DET-COMPASS Categories

abacus abaya amplifier analog watch apron baby monitor backpack

bag of sweets baking dish ballpoint banana Band Aid baseball bat baseball cap

bath towel bathing cap beanie beer bottle beer glass bell pepper belt

bib bicycle helmet bikini binder binoculars bird feeder biscuits

blowtorch boardgame book book jacket boot bow tie bowl

bowler hat box cutter bracelet brassiere bread knife brush bumbag

butternut squash cable caliper camcorder camera can opener candle

canned food capo cardigan cards carving knife cassette cassette player

cd drive cellular telephone cereal chain charger chewing gum chisel

chocolate chocolate sauce Christmas stocking cigarettes clarinet coat hanger cocktail shaker

coffee mug coffeepot colander comb combination lock comic book compact disc

condoms corkscrew cotton buds cotton wool cowboy hat craft knife crayon

crisps crossword puzzle crowbar cucumber dagger denture deodorant

diaper digital watch dinner jacket dishrag dressing gown dvd player e cigarette

e liquid electric fan electric toothbrush empty envelope espresso maker extension cord

face powder fascinator feather boa first aid kit floss flute fork

French loaf frisbee frying pan fur coat gaffer tape game console gameboy

gas canister glove glue gun goggles hacksaw hair clippers hair gel

hair spray hairbrush hammer hand blower handkerchief hard disc harmonica

hatchet headphones hearing aid high heel hook hourglass ipad

iPod iron jean jersey jewellery box jigsaw puzzle joystick

jumper kettle keys kimono kindle kiwi knee pad

knife lab coat ladle lampshade laptop laser pointer leather jacket

lemon lens lens cap letter opener lighter lime lipstick

lotion loudspeaker loupe magazine magnetic compass maillot mallet

marker mask matchstick measuring cup microphone milk can milk carton

mitten mixing bowl modem mortar mosquito net mouse mousetrap

mouthwash multimeter music stand nail nail clippers nail file nail scissors

necklace notebook orange oxygen mask padlock paint can paintbrush

pajama paper towel passport pasta pencil pencil box pencil sharpener

penknife pepper grinder perfume pick pickaxe piggy bank pill bottle

pillow plane plastic bag plate plate rack pliers plunger

Polaroid camera polo shirt pomegranate poncho pop bottle pot power drill

power socket power supply prayer rug quill quilt quilted jacket radio

rasp razor razor blades recorder red wine reflex camera remote control

rice roll of sweets roller skate rubber eraser rubber gloves rubik cube rugby ball

rugby shirt rule running shoe safety pin salad bowl saltshaker sandal

sandwich sarong saucepan saw sax scale scarf

scissors screw screwdriver secateurs sellotape sewing machine shampoo

shaver shawl shirt shorts shovel shower cap sieve

ski mask skipping rope sleeping bag slide slotted spoon smartphone snorkel

soap soap dispenser sock solder soldering iron sombrero soup bowl

spatula spectacles spirit level splitter block spoon spotlight staple gun

stapler stethoscope stockings stole stopwatch strainer strings

stylophone suit sunglasses sunscreen swab sweatshirt swimming trunks

switch syringe table lamp tampon tape measure tea towel teapot

teaspoon teddy telephone telescope tennis ball thermals thermometer

thermos tin of sweets toaster toilet tissue toner cartridge toothbrush toothpaste

top hat torch tracksuit tray tripod tuner ukulele

umbrella underpants vacuum vase velvet vinyl record violin

waffle iron walking boot wall clock wallet washbag water bottle water jug

wellington boot wet wipes whetstone whistle wig wineglass wire wool

wirecutter wok wooden spoon wool wrench wrist guard

Table 11. Category names of DET-COMPASS.



(1): Material-database clustering prompt

“You are a computer expert specializing in material classification. Your task is to analyze a given list of objects,

determine their primary material composition, and group them accordingly.

Instructions:

Identify the main materials present among the objects (e.g., metal, organic, inorganic, plastic, ceramic, etc.). Assign

each object to the most appropriate material category. Each object should belong to only one category based on its

primary composition. Return the results in JSON format, where the keys are material categories, and the values are

lists of objects belonging to those categories.

Example:

Input: Objects: gun, bat, pressure vessel, beer glass, fur coat, lemon

Expected Output (JSON):

metal: [gun, bat],

inorganic: [pressure vessel, beer glass],

organic: [fur coat, lemon]

Now, classify the following list of objects: {�in-house}. Return only the json format.”

(2): Object material identification prompt

“You are a computer vision assistant. Given a {object}, classify it into one of the following materials:

{M .materials_names}. Return only the material. You must always select one.”

Table 12. Prompts used for material clustering and retrieval. (1) The clustering prompt provided to GPT-4 to group Cin-house into

material categories. (2) The retrieval prompt used to queryM and infer the expected material of unknown RGB objects.
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Figure 10. Qualitative comparison of G-DINO [18] and G-DINO+RAXO.
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