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A. Implementation details.

A.1. Human Pose and Shape estimation.

We fine-tune CLIFF [8] and BEDLAM-CLIFF [2] for
HPS estimation using approximately 200k images from our
VOccl3D dataset. CLIFF is trained on real 2D datasets such
as COCO [10] and MPII [1], as well as 3D datasets like
Human3.6M [5] and 3DHP [12], while BEDLAM-CLIFF
is originally trained on synthetic datasets such as BED-
LAM [2] and AGORA [13]. We fine-tune these models on a
single NVIDIA GeForce RTX 3090 Ti GPU. We adopt hy-
perparameters and loss functions from [2] for fine-tuning.
We optimize the models using the Adam optimizer with a
learning rate of 0.00005 and zero weight decay. To prevent
overfitting, we employ early stopping. We use a batch size
of 64 and resize input images to 224 x 224 dimension.

We report errors after converting SMPL-X bodies to
SMPL using a pre-trained joint regressor mapping and
aligning the pelvis of these bodies. We evaluate CLIFF,
BEDLAM-CLIFF, BEDLAM-HMR, HMR2.0, WHAM,
and STRIDE by re-running their evaluations using the of-
ficial code repositories.

We create two variants of the 3DPW dataset, OcclTypel-
3DPW and OcclType2-3DPW, by overlaying black patches
to evaluate performance on highly occluded real-world
datasets. OcclTypel-3DPW is generated by randomly
adding a black patch over a single 2D keypoint from the 22
openpose joints, while OcclType2-3DPW contains images
with two black patches placed on random 2D keypoints.
The added patches are square-shaped, with dimensions
covering 60% of the human height in OcclTypel-3DPW
and 40% of the human height in OcclType2-3DPW. Fig-
ure 2 illustrates sample images from OcclTypel-3DPW and
OcclType2-3DPW. We follow the same evaluation proce-
dure for real-world datasets, including 3DPW, OcclTypel-
3DPW, OcclType2-3DPW, and OCMotion, as we do for the
VOccl3D dataset.

Evaluation metrics. Following prior works, we use stan-
dard metrics to report the performance of human pose and
shape estimation. MPJPE and PVE represent the average
error in joints and vertices respectively after aligning the
pelvis. PA-MPIJPE reports the average error after aligning
the rotation and scale. All errors are in mm.

YOLOM VOccl3D-YOLO11

Figure 1. Human detection under occlusion on OCMotion us-
ing YOLO11. The left image illustrates detection performance
with the pre-trained YOLO11, while the right image shows im-
proved detection after fine-tuning YOLO11 with the VOccl3D
dataset, resulting in VOccl3D-YOLO11.

A.2. Human detector.

We conduct our experiments on the YOLO11 detector using
the official Ultralytics codebase [6]. The original YOLO11
model is pre-trained on the MS COCO dataset [10]. To
enhance its performance under occlusions, we fine-tune
YOLOL11 on the combined train split of VOccl3D and MS
COCO, resulting in VOccl3D-YOLO11. We fine-tune the
model for 50 epochs with a batch size of 32 on a single
NVIDIA GeForce RTX 3090 Ti GPU. Following [6], we
resize input images to 640 x 640 and train using a learning
rate of 0.01 with a weight decay of 0.0005. Additionally,
we set the loss function weights to 7.5 for the bounding box
component and 0.5 for the classification component to opti-
mize detection performance.



Figure 2. Samples of OcclTypel-3DPW (top row) and OcclType2-3DPW (bottom row) dataset.

Figure 1 shows the qualitative performance of YOLO11
and VOccl3D-YOLO11, where we show an improved per-
formance of VOccI3D-YOLO11 under high occlusions.
Evaluation metrics.We evaluate detector performance us-
ing mean Average Precision (mAP) at Intersection over
Union (IoU) thresholds of 0.50 and 0.75, referred to as
mAP50 and mAP7S5, respectively. Unlike standard bound-
ing box labels that include only visible human regions, we
provide bounding box annotations that cover the entire hu-
man body, including both visible and occluded parts.

B. Additional related works.

Datasets for Pose Estimation Previous works have pro-
posed several datasets for HPSE, which are either video-
based or image-based. One of the pioneers in this field
is the CMU Motion Capture dataset which primarily con-
tained 3D skeletal data without RGB images. This dataset
included a wide range of activities like dancing, walking,
and sports and served as a cornerstone for tasks like an-
imation, pose estimation, and gaming. Further, in 2016,
the MSCOCO dataset [10] was released which initially con-
tained over 200,000 labeled images covering 80 object cate-
gories, including humans. The scale of this dataset provided
a wealth of data that was unprecedented for pose estimation
tasks at the time. Additionally, MSCOCO introduced key-
point annotations for human pose estimation, providing 17
key points per person. The Archive of Motion Capture As
Surface Shapes (AMASS) dataset [11], introduced in [11],
is a large human motion database that unifies various op-
tical marker-based motion capture datasets under a com-
mon framework and parameterization. This dataset con-

tains 40 hours of human motion data, spanning over 300
subjects, and motivated large-scale pre-training in a variety
of follow-up HPS works [3, 7, 9, 15]. The recent 3D Poses
in the Wild (3DPW) dataset [14] is a widely-used bench-
mark for evaluating 3D human pose estimation methods
in natural, unstructured environments, providing accurate
3D pose annotations derived from synchronized video and
inertial measurement unit (IMU) data. This dataset com-
prises over 51,000 frames and across 60 video sequences.
Although these datasets fueled the state-of-the-art methods
but contain limited occlusions in their samples. This makes
methods trained on these datasets vulnerable to occlusions,
limiting their ability to generalize to unseen scenarios with
significant occlusions.

C. Qualitative examples

In this section, we present the qualitative results of our
fine-tuned model, VOccl3D-B-CLIFF, in comparison with
other HPS estimation methods. Figure 3 illustrates quali-
tative results on the OcclType2-3DPW dataset, while Fig-
ure 4 provides additional qualitative comparisons on the
test split of VOccl3D. We observe the superior performance
of VOccl3D-B-CLIFF across multiple datasets. Addition-
ally, Figure 5 showcases further sample images from the
VOccl3D dataset.

D. Limitations and Future Work

Our work highlights the need and importance of a large-
scale, realistic occluded human dataset for performing the
task of human pose and shape estimation. By releasing this
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Figure 3. Qualitative comparison of HPS estimation methods on OcclType2-3DPW dataset. Column 1 represents input RGB image.
Columns 2—4 compare HPS estimation using the CLIFF [8], BEDLAM-CLIFF [2], and HMR2.0 [4] methods. The final column (VOccl3D-
B-CLIFF) presents results obtained by fine-tuning the CLIFF model on the VOccl3D dataset.
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Figure 4. Qualitative comparison of HPS estimation methods on VOccl3D dataset. Column 1 and 2 represents input RGB image and
ground truth pose. Columns 3 and 4 compare HPS estimation using the BEDLAM-CLIFF [2], and HMR2.0 [4] methods. The final column
(VOccl3D-B-CLIFF) presents results obtained by fine-tuning the CLIFF model on the VOccl3D dataset.



Figure 5. Samples of VOccl3D dataset. The samples from VOccl3D dataset illustrates various diversity in real occlusions, human motions,
and clothing textures.

Datasets #Sub  #Frames Image Subj/image Motion Ground-Truth  Occlusion Multi-level Occlusion  Video data
SURREAL 145 ~6.5M  composite 1 >2k SMPL No No No
MPI-INF-3DHP-Train 8 >1.3M  mixed/composite 1 8+ 3D joints No No Yes
AGORA >350 ~18k rendered 5-15 n/a SMPL-X Yes No No
BEDLAM 217 380k rendered 1-10 2311 SMPL-X No No Yes
SynthMoCap ~200 ~100k rendered 1-4 n/a SMPL-X No No No
OCMotion 8 300k captured 1 43 SMPL Yes No Yes
VOccl3D ~200 ~250k rendered 1 400 SMPL-X Yes Yes Yes

Table 1. Comparison of synthetic datasets and real dataset with occlusion for 3D human pose estimation.



dataset and the associated tools for repopulation, we aim to
enable the research community to systematically evaluate
their algorithms under challenging occlusion scenarios.

Currently, the visual quality of our synthetic humans is
limited by the lack of open-source high-fidelity assets, such
as garments, hairstyles, footwear, and diverse human mo-
tions, which are constrained by the AMASS dataset. More-
over, our rendering pipeline relies on predefined camera
poses to generate images with substantial occlusions. A
promising direction for future work would be to develop
an end-to-end framework that can automatically generate
occlusion-rich sequences without requiring externally pro-
vided camera parameters.

Although the VOccl3D dataset offers realistic occlusion
scenarios, a noticeable gap remains between synthetic and
real-world data. Bridging this sim-to-real gap represents an
important avenue for future research in realistic human pose
estimation. Additionally, our dataset holds potential util-
ity for broader research efforts focused on occlusion-aware
learning across various modalities, including human silhou-
ette extraction, body-part segmentation, 2D keypoint esti-
mation, and bounding box detection
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