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User: If an image contains [cap1], [cap2]… [capk]. Are/Is/Does/Do the [target] in this image? Answer the Yes-No question
with only the single word with nothing else.
ASSISTANT: Yes | No

============= Example 1 ============
User: If an image contains a dog on the beach, green grass on the ground, a large rock in the background, a dog is standing
in the dirt. Is the grass green in this image? Answer the Yes-No question with only the single word with nothing else.
ASSISTANT: Yes.

============= Example 2 ============
User: If an image contains a red and white striped shorts, a man wearing a white shirt, a boy with a red shirt, a blue and
white bag, a little boy sitting on the ground with a frisbee. Does the child stand in this image? Answer the Yes-No question
with only the single word with nothing else.
ASSISTANT: No

============= Example 3 ============
User: If an image contains a man wearing a white shirt, a section of green grass, a man wearing a blue shirt, a baseball
player, a green grassy field, two men playing soccer. Are there three men in this image? Answer the Yes-No question with
only the single word with nothing else.
ASSISTANT: No

Figure 1. We utilize captions to assist Llama2 in understanding vision-related questions, facilitating the evaluation of our model’s semantic
expressiveness. Blue indicates the captions extracted by the model, orange highlights the targets of interest for evaluation, and red represents
Llama2’s answers.

In the supplementary material, we provide details and
additional results of the evaluation for the model’s expres-
siveness in Sec. 1. Sec. 2 provides a detailed description
of the parsing and filtering techniques in data processing,
while Sec. 3 includes additional visualizations.

1. Evaluation of Semantic Expressiveness

We adopt evaluation types from AMBER [3], including
coverage, existence, and attribute, to better assess our
model’s expressiveness. For coverage, we use the Cover
metric to reflect the comprehensiveness of category cover-
age, while Precision, Recall, and F1 are used for the other
types. Specifically, existence assesses the model’s abil-
ity to perceive category presence, and attribute evaluates
its ability to express features like color, action, and quan-
tity. Following AMBER, the Cover metric is obtained by
extracting key nouns from captions. In contrast, evalu-
ating existence and attribute requires Yes-No questions to
query a multimodal large language model [1, 4]. Since
our model lacks conversational capabilities, we instead save
region-level captions and use them to construct prompts for
Llama2 [2], allowing it to answer Yes-No questions for
these metrics. As shown in Figure 1, for each image, we

formulate questions based on a set of extracted captions
[cap1], [cap2], . . . , [capk] and a target [target], and use the
instruction “Answer the Yes-No question with only a sin-
gle word and nothing else.” to constrain Llama2’s output.
This allows the purely textual Llama2 model to indirectly
interpret visual content and determine the existence of the
[target] in the image. For example, in Example 2 of Fig-
ure 1, the model can infer that “child stand” does not exist
based on the caption “a little boy sitting on the ground with
a frisbee” and thus responds with “No”.

In Table 9 of the main paper, we present the results of
our method on the evaluation types of coverage, existence,
and attribute. Notably, the attribute evaluation encompasses
three aspects: state, which reflects properties such as color
and shape; number, which captures the quantity of target
objects; and action, which assesses the target’s actions. The
detailed results for these three aspects are shown in Table 1.
Overall, our method demonstrates strong performance in
state and number compared to most multimodal large lan-
guage models. This can be attributed to the effective model
design and the integration of data processing strategies, en-
abling our approach to provide detailed descriptions of in-
dividual regions. However, our method shows relatively
weaker performance in action recognition. This limitation



Table 1. Detailed evaluation results for attribute expression. State refers to attributes such as color and shape, number indicates the quantity
of the target, and action focuses on the target’s movements.

Methods Attribute (Att) Att-State Att-Number Att-Action
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

mPLUG-Owl 87.5 13.2 22.9 86.4 17.1 28.5 92.3 1.2 2.4 92.5 21.7 35.2
LLaVA 78.9 35.1 48.6 76.2 43.5 55.4 91.6 15.7 26.8 87.1 35.9 50.8
CogVLM 79.7 44.9 57.4 76.7 42.1 54.4 79.8 39.0 52.4 91.4 77.5 83.9
LLaVA-1.5 88.0 51.0 64.6 86.6 43.8 58.2 87.7 59.1 70.6 93.8 73.0 82.1
mPLUG-Owl2 88.1 61.5 72.4 87.4 59.4 70.5 89.1 60.6 72.1 94.0 76.3 84.1
InstructBLIP 75.9 76.7 76.3 73.5 81.4 77.2 78.9 61.2 68.9 85.4 88.6 87.0
Ours+Llama2 66.3 83.9 74.1 65.2 86.4 74.3 72.4 73.7 73.0 61.4 95.2 74.6

Figure 2. Examples of parsing and filtering techniques for pro-
cessing image-text pair data.
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Figure 3. Details of the filtering process. Blue represents region-
level proposal visual features, green denotes CLIP text embed-
dings, and orange indicates similarity scores.

arises because action understanding often requires reason-
ing across multiple regions. While our model excels at inde-
pendently describing isolated semantic regions, it struggles
with cross-region reasoning.

It is important to emphasize that our work primarily fo-
cuses on developing a recognition model with strong capa-
bilities in identifying and describing independent semantic
regions, including attributes such as color, shape, and quan-
tity. Moving forward, we will try to explore approaches
for modeling relationships across multiple regions, thereby
improving the model’s ability to understand action-related
attributes.

2. Details of Parsing and Filtering in Image-
Text Data Processing

Enabling a language model to comprehend visual content
typically requires a large amount of data, but existing seg-
mentation datasets provide only limited resources. To ad-
dress this, we incorporated object detection data and image-
text pairs as weakly-supervised data into the training pro-
cess. While object detection data, which includes class
labels, can be directly utilized, image-text pairs only pro-
vide captions, making them unsuitable for direct use. To
overcome this limitation, we designed a parsing and filter-
ing pipeline to process the image-text pairs, as illustrated
in Figure 2. Specifically, we used spacy to extract noun
phrases from the captions. However, this extraction intro-
duces a significant number of invalid nouns, such as “his-
tory”, which do not have corresponding visual entities in
the image.

To address this limitation, we implemented a filtering
step to eliminate irrelevant phrases. As shown in Figure 3,
we first employed a pre-trained open-vocabulary segmen-
tation (OVS) model and calculated the similarity between
each noun phrase and the extracted regions using CLIP Text
Encoder. The maximum similarity score across all regions
was assigned as the phrase’s similarity to the image. Sec-
ond, after processing all image-text pairs data, we ranked
the similarity scores of all extracted phrases and discarded
the bottom fraction R ∈ [0, 1] with the lowest confidence.
In this way, we have completed the processing of image-text
pair data for our method.

3. More visualization results

In Figure 4, we present additional visualization results.
In Figure 4(a), when using our original MaskFormer-like
mask extractor, we rely on semantic-agnostic masks. Al-
though these masks provide less refined boundaries, they
still achieve satisfactory semantic segmentation results. No-
tably, our model generates diverse categories and captures
higher-level semantics, such as “two planes in the sky”.
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Figure 4. More visualization results.

Furthermore, the model’s design, which processes bina-
rized masks, allows seamless integration with tools like
Segment Anything Model (SAM). Leveraging SAM’s capa-
bilities, we enable interactive understanding, as illustrated
in Figure 4(b), where specific semantic targets can be se-
lected through clicks, as well as holistic scene understand-
ing, shown in Figure 4(c). It is also worth noting that SAM
can extract more localized targets, such as “ear”. This is be-
cause SAM uniformly samples across the entire image, and
adjusting the sampling distance influences the granularity
of the extracted masks. Therefore, integrating with SAM
enables some control over the granularity of the objects un-
derstood by the model, further broadening the application
scenarios of our approach.
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