
PRM: Photometric Stereo based Large Reconstruction Model

Supplementary Material

A. BRDF Parameterization
In Sec. 3.1 we introduce the D, F and G term of the
specular component of BRDF property. We implement the
Cook-Torrance BRDF model [5]. The basic specular albedo
F0 = (m ∗ a+ (1−m) ∗ 0.04), where a is the albedo and
m is the metalness. The Fresnel term (F ) is defined as:

F = F0 + (1− F0)(1− (h · ωo))
5, (13)

where h is the half-way vector between ωo and view-
ing direction ωi. The normal distribution function D is
Trowbridge-Reitz GGX distribution as

D(h) =
α2

π ((n · h)2(α2 − 1) + 1)
2 , (14)

where α = ρ2, n is the surface normal. The geometry term
G is the Schlick-GGX Geometry function:

G(n,ωo,ωi, k) = Gsub(n,ωo, k)Gsub(n,ωi, k), (15)

where Gsub is given by:

Gsub(n,ω, k) =
n · ω

(n · ω)(1− k) + k
, (16)

where k is a parameter related to the roughness ρ, often
approximated as k = ρ4

2 .

B. Optimization and Additional Model Details
Optimization Details. We used Adam [24] as our opti-
mizer. In the first stage, the learning rate was set to 4×10−5.
In the second stage, the learning rate was set to 4 × 10−6

for finetuning. We used 32 NVIDIA A800 GPUs in the first
stage for nerf training with a batch size of 256 for 100K
steps, taking about 7 days. In the second stage, We used 32
NVIDIA A800 GPUs to finetune the model from the first
stage with a batch size of 256 for 30K steps, taking about 3
days.
Network architecture. Our network architecture is simi-
lar to that of InstantMesh [48], consisting of a pre-trained
DINO that encodes images into image tokens, and an
image-to-triplane transformer decoder that projects these
2D image tokens onto a 3D triplane using cross-attention.
Furthermore, three MLPs are utilized, taking interpolated
triplane features as input and outputting albedo, SDF, defor-
mation, and weights. These outputs are required by Flexi-
Cube for mesh extraction and subsequent rendering. The
details of the network is shown in Figure 7. Our final model
is a large transformer with 16 attention layers, with feature

dimension 1024. The size of triplane is 64 × 64 × 3 with
80 channels. The grid size for FlexiCube was set to 128.
The resolution of input images was 512.

C. Training Strategy
Camera Augmentation. Previous LRMs typically pre-
pare training data by rendering images with fixed Fields-
Of-View (FOVs) and camera distances, making the mod-
els sensitive to changes in these variables during inference.
Since we adopt a real-time rendering method and mesh ras-
terization for fast online rendering, we can readily adjust
the FOVs and camera distances during training. This train-
ing strategy enhances our model’s robustness to variations
in camera embeddings. We provide some examples in the
following section.
Random materials and lighting. During inference, one
option for 3D mesh reconstruction is to leverage a multi-
view diffusion model to generate multi-view images. How-
ever, these images may exhibit inconsistencies in materials
or lighting. To ensure our model remains robust to these in-
consistencies, we randomly change the materials and light-
ing when rendering each view during training. Alterna-
tively, the lighting and materials of the input images are
consistent. Our model need to handle this scenario. There-
fore, we establish a threshold to ensure that the rendered
multi-view images potentially share the same materials and
lighting. Specifically, when rendering each view, there is a
50% probability that the materials and lighting will change.
This arrangement means that each view may feature differ-
ent materials or lighting. If no changes are made, all views
are rendered with consistent materials and lighting.

D. Example of images with varying materials
and illumination

In this section, we present examples of rendered images
with varying materials and illumination along with interme-
diate shading variables, including specular lighting, diffuse
lighting, albedo maps and environment maps, as shown in
Figure 8. The red box highlights how varying roughness
levels influence the specular lighting maps, affecting their
frequency. Specifically, lower roughness (right) results in
specular lighting of higher frequency.

E. Application Visualization
Since our method can reconstruct high-quality meshes with
predicted albedo, it facilitates downstream applications
such as relighting and material editing. We showcase some
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Figure 7. The details of network architecture.
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Figure 8. Examples of rendered images with varying materials
and illumination, along with specular, diffuse lighting maps and
albedo maps. The red box highlights how varying roughness lev-
els influence the specular lighting maps, affecting their frequency.
Specifically, lower roughness (right) results in specular lighting of
higher frequency.

examples in Figure 9.

F. ROBUSTNESS Evaluation

Robustness to Camera Embedding. PRM exhibits ro-
bustness to variations in camera embedding. We compared
PRM with InstantMesh by altering the camera embedding
(i.e., FOV and camera radius) during inference. The re-
sults, shown in Figure 11, demonstrate that PRM maintains
strong robustness to changes in camera embedding, whereas
the performance of InstantMesh declines significantly when
camera embedding varies.
Robustness to image appearance. PRM is robust to the
image appearance. When handling specular surfaces, we

Relighting

Metallic Editing

Roughness Editing

Figure 9. Application visualization. We show relighting and ma-
terials editing here.

can achieve correct geometry reconstruction. More visual-
ization results can be found in Figure 12.
Robustness to spatially-varying materials. PRM is robust
to the objects with spatially-varying materials for both syn-
thetic and real-captured images. More visualization results
can be found in Figure 17.

G. The effect of the number of camera views

We demonstrate the importance of varying camera poses for
rendering multi-view images with varying materials and il-
lumination as input. The number of input views is increased
from 1 to 8. The qualitative results are illustrated in Fig-
ure 13. The quantitative results, including Chamfer Dis-
tance (CD) and F-Score, are depicted in Figure 10. When
more images rendered under different camera views are in-
putted, we achieve better results; using 4 or 6 views pro-
vides the optimal balance between effectiveness and effi-
ciency.
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Figure 10. Ablation study of the effect of number of input views.

H. Failure Cases
Although effective, the performance of PRM is constrained
by the quality of the multi-view images generated by the
multi-view diffusion model when performing single image
to 3D tasks. We illustrate a failure case in Figure 14. The
lack of depth information in the input image leads to unde-
sirable multi-view image generation, resulting in a recon-
structed 3D mesh that lacks accuracy. A potential solution
is to use the estimated depth to guide the multi-view images
generation. We show an example of the estimated depth
by DepthAnythingV2 [51] in Figure 15. Our method can-
not handle multi-view images with background as shown
in Figure 18, since we used images with while background
as input during training as previous methods do. However,
we can easily obtain images with while background by pre-
trained segmentation model.

I. More visualization results
We show more visualization results of PRM in Figure 16.
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Figure 11. Comparison with InstantMesh when changing FOVs and camera radius: PRM demonstrates robustness to variations in camera
embedding. Conversely, InstantMesh struggles when the radius and FOV differ from those used during training.
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Figure 12. Single view reconstruction results using our method on input images with extreme conditions, such as specular highlights and
shadows. Despite challenging lighting conditions, PRM successfully reconstructs the geometry and surface normals with high fidelity.
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Figure 13. The effect of the number of input views. More views lead to better reconstruction result.
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Input image Generated multi-view image Reconstructed geometry

Figure 14. Illustration of a failure case.

Estimated DepthInput Image

Figure 15. DepthAnythingV2 can estimate correct depth for image that lacks depth information, which may help multi-view diffusion
model generate more reasonable multi-view images.
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Figure 16. Visualization of more results of single view to 3D task.
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Figure 17. PRM can handle objects with spatially-varying materials for both synthetic and real-captured images.
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Figure 18. Our method fails to handle images with natural background since we takes images with while background as input during
training.
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