V2PE: Improving Multimodal Long-Context Capability of
Vision-Language Models with Variable Visual Position Encoding

Supplementary Material

A. Experiment on Larger VLMs

In Sec. 4, we observe that our V2PE method exhibits lim-
ited improvements on general benchmarks when employ-
ing a smaller . We hypothesize that this is due to the
InternVL2-2B used in our experiments, which underwent
pre-training and SFT with conventional position encoding,
inherently adapting it to a position increment of § = 1 for
short contexts.

To further validate our hypothesis, we begin with the
pre-training of a hybrid InternVL2.5-7B model, whose lan-
guage backbone is Qwen 2.5-7B[26], distinct from the
InternL.M-2B backbone used in the main paper. At this
stage, the model has not yet adapted to conventional posi-
tional encoding for visual tokens (i.e., 6 = 1). We conduct
pre-training experiments both with and without V2PE, and
evaluate the resulting models on a suite of general bench-
marks. As shown in Table 2, integrating V2PE yields better
performance at smaller § values, supporting our hypothe-
sis and highlighting the generalizability of V2PE in larger-
scale models.

Furthermore, to assess the architectural generality of
V2PE, we apply it to LLaVA-One-Vision-7B[10] and con-
duct subsequent supervised fine-tuning (SFT). The results,
presented in Table 1, consistently demonstrate the effective-
ness of V2PE across different model backbones.

MM-NIAH
Model ‘ #

‘Image Text Avg
LLaVA-One-Vision-FT32K 619 795 70.7
LLaVA-One-Vision-V2PE32K (0 = | 67.6 844 76.0
1/256)

Table 1. Performance comparison on MM-NIAH after apply-
ing V2PE to LLaVA-One-Vision-7B. V2PE significantly improves
both image and text understanding.

B. Optimal § Selection

We have conducted a detailed analysis of the context length
distribution of training samples, the selection strategy of
optinal 4, and corresponding empirical experiments.

B.1. Training Context Length Distribution.
During training, we uniformly sampled ¢ from the set

11111 1 1 1 1
A{1’2’4’8’16’32’64’128’256} M

Therefore, the expected context length is given by

E[Lcontext] = IE:[-N'img -0 + Ntext]
1 2
= E[Nimg] - 151 + E[Neexd]

Where Leonext 18 the total context length, Ny, is the
number of image tokens, and Ny the number of text to-
kens. We denote this expected value as the optimal con-
text length, denoted L*. Applying the above formula to the
training datasets for Long-VQA and Long-MR yields L*
values of 3.5k and 11.1k, respectively.

B.2. Inference ¢ Selection strategy.

To align inference with the training distribution, we default
to § = %, which is closest to %+ in log, space.

However, if the actual context length during inference
Levat = Nimg/4+ Niear exceeds the optimal context length
L*. In such cases, we aim to find a ¢’ such that L* = Nimg-
0" + Nieye. The boundary between the two cases should
be continuous. Thus, our delta selection strategy can be
formalized as:

1 L* — N
¢ = min ( wx‘) 3)
4" Nimg

We then select the closest available value § to ¢’ from the
discrete set A, again using log, proximity.

B.3. Experiments.

Fig. 1 compares the theoretically predicted and empirically
optimal § values for Long-VQA and Long-MR tasks. For
Long-VQA, the match is strong across the full range. For
Long-MR, due to a low image token ratio (39%), there is a
sharp change after 20K tokens, with § = ﬁ nearly always
optimal, aligning with the prediction. Below 20K tokens,
the performance is close across §. We consider this to be in
agreement as well.

C. Dataset Details

We have introduced two augmented long-context multi-
modal datasets: Long-VQA and Long-MR, designed to sys-
tematically evaluate and analyze the long-context capabili-
ties of Vision-Language Models (VLMs). Representative
examples from these datasets are illustrated in Fig.4, Fig.5,
Fig.6, and Fig.7. Next, we will provide a detailed descrip-
tion of the dataset construction process.



Model § | ChartQA DocVQA AIR2D InfoVQA SQA POPE MMMU., MMBenchey SEED; | Avg
InternVL.2.5-7B - 79.4 85.4 81.1 68.4 944 879 51.6 82.0 759 | 785
17256 | 812 885 81.0 677 944 883 50.7 8§14 759 | 788

1/64 81.7 89.4 81.3 69.6 947 883 523 81.8 75.9 | 79.4

/16 81.7 90.4 81.6 70.4 950 882 53.3 81.9 761 | 79.8

InternVL.2.5-7B + V2PE -, 82.4 91.0 81.8 71.7 949  88.1 52.6 81.9 76.1 | 80.1
11 822 90.2 81.7 714 946  88.5 524 822 762 | 799

Table 2. Evaluation results of InternVL2.5-7B and its V2PE variants on multiple multimodal benchmarks. V2PE consistently improves
performance across different ¢ values, with best average performance at 6 = 1/4.
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Figure 1. Comparison between the predicted optimal § (calcu-
lated by Eq. 3) and empirically optimal 9, along with the accuracy
heatmap of the experiment results.

C.1. Long Visual Question Answering (Long-VQA)

The Long-VQA dataset presents a novel challenge to
VLMs, necessitating advanced visual perception and so-
phisticated reasoning capabilities to address tasks involving
long context. This dataset is synthesized by combining mul-
tiple existing datasets in Tab. 3 to create a set of complex
multi-image tasks.

For datasets that primarily consist of document-like im-
ages, such as DocVQA [15], we extend the context by merg-
ing multiple single-page documents into cohesive multi-
page collections. Questions are subsequently sampled from
one of the original documents, ensuring that the model’s
ability to retain and utilize information across an extended
multi-page context is rigorously evaluated.

In the case of datasets composed of visual elements like
images, charts, and tables, such as those from GQA [7],
VizWiz [6], and TabFact [3], we aggregate these compo-
nents into complex, multi-page documents that emulate
naturalistic scenarios. Each visual element, whether an
image or a chart, is strategically positioned across differ-
ent pages and at various locations (e.g., upper-left, center,
lower-right). This configuration is designed to evaluate a
model’s complex reasoning capabilities, as it requires an un-
derstanding of the relative positioning of elements through-
out the entire document.

By constructing a diverse and challenging dataset, Long-
VQA not only evaluates a model’s ability to process a wide
range of visual inputs but also emphasizes the necessity of
navigating through complex, multi-image contexts. This
synthesis of data from multiple sources, combined with the

deliberate complexity of the spatial layouts, establishes a
rigorous benchmark for VLMs. Additionally, we provide
the length distribution of the Long-VQA test set in Fig. 2.
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Figure 2. The token length distribution of test set in Long-VQA.

C.2. Long Multimodal Retrieval (Long-MR)

Our proposed Long-MR dataset is constructed upon the
MM-NIAH [23] benchmark, designed specifically to eval-
uate the performance of VLMs in long-context multimodal
retrieval tasks. To further assess the generalization capa-
bilities of VLMs within this task, we introduce additional
synthetic variations that increase the task complexity.

Unlike the original MM-NIAH, where a single needle is
inserted, our Long-MR dataset incorporates multiple nee-
dles into the long-context multimodal sequence. Of these
needles, only one is considered as the target query, while
the remainder serve as negative needles. This configura-
tion introduces significantly more challenging negative in-
stances, compelling the model to accurately distinguish be-
tween highly similar yet irrelevant needles in a lengthy con-
textual sequence.

To enrich the diversity of needles, we leverage advanced
large language models (LLMs) to create synthetic needles
beyond those included in the official MM-NIAH bench-
mark. This expansion results in a more heterogeneous
dataset that emulates real-world complexity, thereby im-
proving the robustness of the evaluation. Such diversifica-
tion reduces the risk of the model overfitting to a particular



Table 3. Data statistics of Long-VQA dataset.

Dataset Dataset Size
Training  Validation

DeepForm [24] 3.4K 2.1K
DocVQA [15] 39.4K 6.0K
InfoVQA [16] 23.9K 4.1K
Kleister [21] 13.4K 5.5K
SQA [12] 10.2K 4.1K
VisualMRC [22] 15.8K 7.4K
ChartQA [14] 40.1K 3.3K
DVQA [9] 150.0K 16.4K

TabFact [3] 91.6K 13.4K
WikitabQS [18] 14.1K 5.1K

Clevr [8] 150.0K 16.4K
GQA [7] 150.0K 16.4K
OcrVQA [17] 150.0K 16.4K
OKVQA [13] 9.0K 5.8K
TextCaps [19] 110.0K 17.2K
TextVQA [20] 56.5K 6.5K
Vizwiz [6] 20.5K 8.8K
Total 1.1M 155.0K

needle category, fostering the development of more gener-
alizable retrieval capabilities.

Fig. 3 illustrates the length distribution of our costumed
evaluation split, denoted as MM-NIAH ;. Notably, the ma-
jority of sequences fall within the 512K to 1M token range.
For contexts with lengths shorter than 64K, we directly uti-
lize the samples from the original MM-NIAH benchmark.
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Figure 3. The token length distribution of our MM-NIAH m

D. Evaluation

To address the out-of-memory challenge encountered dur-
ing inference on samples exceeding token lengths of
128K in the MM-NIAH;y evaluation dataset, we adopt
a perplexity-based approach similar to that employed in
LongVA [27]. Specifically, during evaluation, we concate-
nate the question embedding, which integrates both textual
and visual components, with the output answer embedding.
Subsequently, a single forward pass is performed using ring

Table 4. Summary of our training hyper-parameters.

Configuration V2PE Setting
Weight init InternVL2-2B [4]
Loss type Generative loss
Learning rate schedule = Cosine decay
Optimizer AdamW [11]
Learning rate Se-6

Weight decay Se-2

Input image resolution 448 x 448
Warmup steps 150

Iterations 5K

attention to predict the logits of the answer. The output is
considered correct if the index corresponding to the highest
output logit across all tokens within the answer span aligns
with the correct answer.

To facilitate comparison between position encoding ex-
tension and our proposed V2PE, we determine the interpo-
lation factor for linear interpolation [2] based on the test
sample length and the context window size used during
training. Specifically, we interpolate the position indices of
the test samples to match the context window range from the
training phase. For example, when evaluating InternVL2-
FT-32K on the 64K-length Long-VQA task using linear in-
terpolation [2], we utilize an interpolation factor of 2, which
effectively maps the position indices of the test samples into
the 32K range, consistent with the context length employed
during training. Similarly, for evaluations involving 1M-
length samples, an interpolation factor of 32 is selected. For
the NTK-Aware Scaled RoPE [1], we fix the scaling factor
at 5, as our experimental results indicate that it yields con-
sistent performance across tasks of varying lengths.

E. Experiment Details
E.1. Technical details about V2PE

The detailed training configurations are summarized in Ta-
ble 4. Additionally, for experiments involving the V2PE
method, we employ the F1oat 32 data type when comput-
ing positional indices and positional embeddings required
for RoPE, to ensure computational precision.

E.2. Linear interpoation and NTK-Awared Scaled
RoPE

When comparing the performance of linear interpolation
and V2PE, we select the interpolation coefficient based on
the length of the test samples and the context window used
during training. Specifically, we interpolate the position
indices of the test samples into the range of the training
context window. For example, in the case of InternVL2-
FT-32K, when evaluating it on the 64K-length Long VQA



task, we set the interpolation coefficient to 2 so that the po-
sition indices of the test samples are mapped within the 32K
range, which corresponds to the context length used during
training. Similarly, when testing on 1M-length samples, we
set the interpolation coefficient to 32 to ensure that the posi-
tion indices during testing do not exceed the training context
window too much.

When comparing NTK-Aware Scaled RoPE and V2PE,
we fix the coefficient of NTK-Aware Scaled RoPE at 5,
as our experiments indicate that this value performs well
across tasks of different lengths.

E.3. Visual token compression in ablation study

In the ablation study, we follow InternVL’s compression ap-
proach (PixelShuffle + MLP) to implement token compres-
sion. By training both the token compression and V2PE
methods on the same dataset and conducting evaluations,
we demonstrate that the effectiveness of V2PE lies in com-
pressing the range of position encoding while preserving
the complete token information. To verify the orthogonal-
ity of our proposed V2PE with other token compression
methods, we also conduct an ablation study for MM-NIAH
image retrieval tasks on attention sink [25], which focuses
on reducing inference computational cost in long context.
The results show that the official InternVL2-2B achieves
26.3 points, which can be enhanced by applying V2PE to
achieve 62.8 points. Moreover, InternVL2-2B can also be
further improved by applying both V2PE and attention sink
to achieve 70.3 points. It should be noted that V2PE and at-
tention sink both target long-context challenges, and V2PE
specifically refines visual position encoding.

F. Attention Matrices Analysis

To investigate the impact of our V2PE on attention mecha-
nism, we follow [5] to analyze the attention matrices on
the Long-VQA evaluation set. Specifically, our analysis
focuses on the tail portion of the entire attention matrices,
which corresponds to the question segments located at the
end of the sequences. This allows us to observe how ef-
fectively the model retrieves relevant information when an-
swering questions.

As illustrated in Fig. 8, we observe that as the positional
increment parameter § decreases, the attention patterns in
Layer 1 exhibit an increasingly distinct emphasis on visual
tokens. This observation suggests that with smaller val-
ues of ¢, the model becomes more attentive to visual con-
tent, which is crucial for answering questions involving vi-
sual inputs. Furthermore, Fig. 9 shows that in deeper lay-
ers (e.g., Layer 15), the attention becomes more focused
around a specific sequence index, particularly ID=1410, as
¢ decreases. Notably, the answer to the corresponding ques-
tion is located near the 1410-th token. This indicates that a
smaller ¢ not only sharpens the model’s focus but also aligns

its attention more effectively with the tokens containing the
correct answer.

These findings imply that using smaller positional incre-
ment § allows the model to better align its attention with the
critical portions of the input sequence, thereby enhancing
its capability to retrieve relevant information, especially in
the scenarios of long-context multimodal tasks.
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HUMAN: Referring to the No.9 page, What kind of logistics does the title read? Answer the
question using a single word or phrase.
ASSISTANT: Workplan.

Figure 4. Examples of DocVQA subset from Long-VQA dataset.
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California in the year 2019? Answer the question using a single word or phrase.
ASSISTANT: 11.8.

Figure 5. Examples of ChartVQA subset from Long-VQA dataset.
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(Instance 4 e.g.)
HUMAN: Which of the following images appears in a certain image of the above document?

Figure 6. Examples of Retrieval-Image-Needle in our proposed Long-MR dataset.
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(Instance 1 e.g.)

HUMAN: What is the secret code for the private event scheduled in New York? Address
questions about the images directly and keep your answers brief.

ASSISTANT: The-Old-Warehouse.

Figure 7. Examples of Image-Needle-In-A-Haystack with complex needles in our proposed Long-MR dataset. These needles vary in
answer format, font-size and style.
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Figure 8. Attention map visualization in layer 1 (Maximum over 16 heads).
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Figure 9. Attention map visualization in layer 15 (Maximum over 16 heads).
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