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7. Triage agent

Figure 5 illustrates the architecture of the Triage Agent. To
evaluate its effectiveness, we compared the performance of
the Triage Agent against three MIL-based benchmark meth-
ods [25, 27, 45] for detecting Class 1 vs. Non-Class 1 cases
in the M-Path dataset (details in Section 3). As summarized
in Table 2, PathFinder’s Triage Agent, designed to assess
whether a WSI is risky, outperforms the baseline methods.

Method Class 1 F1 Non-Class 1 F1 Overall Accuracy
AMIL [25] 0.16 0.83 0.71
DSMIL [27] 0.35 0.86 0.77
TransMIL [45] 0.40 0.90 0.83
Triage Agent 0.57 0.95 0.91

Table 2. Comparison of Triage Agent with benchmark methods on
Class 1 vs. Non-Class 1 classification. We report class-specific F1
due to imbalanced nature of the M-Path dataset.

8. VLM-based Navigation Agent

Our initial approach to designing the Navigator Agent ex-

plored a multi-modal architecture based on the LLaVA

framework [31]. This design aimed to enable direct reason-
ing over image latents through an LLM. The architecture
consisted of two main components:

1. A U-Net encoder [42] pre-trained on pathologist view-
ing behavior data (M-Path, details in Section 3), which
served as the image encoder

2. The LLaMA-7B language model [48], which acted as
the reasoning component

8.1. Training Process and Architecture

We first trained a complete U-Net on the M-Path dataset
to learn meaningful representations of WSIs. For the Navi-
gator implementation, we removed the U-Net’s decoder and
retained only the encoder portion. This encoder was then in-
tegrated with LLaMA-7B following the LLaVA framework.
The combined model was trained using instruction tuning,
where each training instance consisted of:
* Input: A WSI and a list of previous observations and their
descriptions obtained from the Description agent
e Output: Grid coordinates (row and column) identifying
regions of interest within the WSI
The underlying hypothesis was that the LLM could ef-
fectively process the U-Net-encoded latent representations

to identify diagnostically relevant grid coordinates directly.

8.2. Limitations and Challenges with a LLaVA-
based Navigator

This approach encountered several significant limitations:

1. Data Scarcity: The available navigation training dataset
proved insufficient for the model to learn robust region
selection strategies.

2. Overfitting Patterns: The model exhibited clear signs
of overfitting:

» Consistently selecting patches from the central regions
of WSIs, regardless of input

» Generating repetitive patch selections

* Failing to generalize to novel slide patterns

8.3. Architectural Pivot

These limitations led us to revise our approach fundamen-
tally. Instead of requiring the LLM to reason directly from
latent representations, we returned to utilizing the complete
U-Net architecture (including the decoder), and leverage the
decoded attention maps for direct region sampling. This
proved to be more robust with limited training data, and we
simply conditioned our U-Net with the descriptions from
the Description Agent to have the feedback loop between
the agents. This experience highlighted the challenges
of applying LLMs to specialized medical tasks with con-
strained training data, even when pre-training sub-modules
(like our U-Net encoder in this case).

9. Description agent

We generated fine-tuning data for the Description Agent by
prompting GPT-4 to extract short and concise histopathol-
ogy findings from provided text. Figure 6 illustrates the
prompt used and a sample of the data generated for fine-
tuning the Description Agent.

10. Training Details of the Diagnosis Agent

We expand the training set to enhance diversity and ro-
bustness by resampling to create 20,000 cases, resulting in
100,000 trajectories for training. Each trajectory consists of
a randomly selected number of descriptions (between five
and ten), and we shuffle the sequence of descriptions within
each trajectory to prevent over-fitting to any specific order.
Each trajectory is formatted as a prompt to the LLM:
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Figure 5. Overview of the Triage Agent architecture. Definitions of M and H can be found in Section 4.
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1 GPT-4 Prompt: Description Agent Instruction Tuning Data Generation
1
1

. System Message: You are an expert in histopathology. Given a histopathology image, | want you to extract medical findings,
conC|se|y Even though you will only see the observation in a text format, act like you are seeing the image. Keep your flndlngs'

l very short and to the point. Do not explain the situation, just write the findings. Also return findings in a json format.

: Example:

'User of those toxins in the epithelial cells that line these tubules, like literally just one of these epithelial cells, thatsI
lwhat we're talking about here. One of those epithelial cells really, really concentrated with something like a bad.
Iantlblotlc that you want to get out of your body. And that's how those cells die. That's how you get tubular cell death. '
' Langerhans cells and a child going into the epidermis with a lot of crust on the surface. Very common to see thatin thISI
|cond|t|on What disease do we think about, obviously? Yeah, we think about Langerhansel histiocytosis in the touch
Iprep And then you can see the large polygonal cells over here. They can have prominent granulomas. It's very often'
lseen in seminomas. You can have prominent granulomas. You can have signet ring cell-like features. So this is a nlce.
Icase to demonstrate this concept and also it's a good reminder of just how much things can change from section to'
! section and why we order deeper levels so often in dermatopathology because oftentimes the deeper level really saves thei

1 day and shows us the finding of interest.
1

Assistant:

{"findings": "Concentration of toxic substances within epithelial cells lining tubules."},
{"findings": "Presence of Langerhans cells infiltrating the epidermis with significant surface crusting."},
{"findings": "Large polygonal cells with prominent granulomas and signet ring cell-like features observed."}

ST

Figure 6. GPT-4 prompt to generate instruction-tuning dataset for the Description Agent.

“The image descriptions below are extracted from differ-
ent patches from the same WSI; please tell me which class
the image belongs to: descriptions”, where descriptions is
the list of selected descriptions.

We fine-tune the LLM using LoRA (Low-Rank Adapta-
tion) [17] with the scaling factor « = 8, dropout rate 0.1,
and rank parameter » = 8 in the LoRA layers. The model
is trained using cross-entropy loss, with a learning rate of
5 x 10~°, weight decay 0.001, and batch size 16.

11. Evaluation and experiments

This section provides details on the qualitative analysis
conducted by pathologists and the prompt for our LLM-
prompting experiments.

11.1. Qualitative Analysis of Descriptions Assessed
by Pathologists

To evaluate the quality of the descriptions generated by the
Description Agent, we cropped the region of interest from
25 WSIs from M-Path dataset and generated descriptions
for these regions using three models: PathFinder’s Descrip-
tion Agent, GPT-40, and LLaVa-Med. Figure 7 presents
a few sample cases. Since our Description Agent is fine-
tuned to produce short and concise descriptions, we ensured
a fair comparison by prompting LLaVa-Med and GPT-40
with the instruction: Describe the histology image concisely
in less than 20 words. We conducted a survey involving
two pathologists who were asked to answer the following
two questions regarding descriptions produced by the three
models. The study was conducted in a double-blind, ran-



domized manner to ensure unbiased results:

1. Selection: Please select the description that you believe
best matches the content of the image. (Options: Model
A, Model B, Model C)

2. Reason for Preference: Please choose the primary rea-
son for your preference. You may select more than one
option if applicable. If Other, please specify.

* Correctness: The description accurately reflects the
features of the image.

e Detail: The description provides a comprehensive
analysis of the image.

* Relevance: The description emphasizes the most per-
tinent aspects of the image.

* Other: Please specify.

Figure 8 illustrates the distribution of reasons selected
by pathologists for preferring each model. As shown, none
of the models were preferred for their level of detail, which
aligns with expectations since the models were specifically
prompted to generate short and concise descriptions, inher-
ently limiting detailed information. The majority of prefer-
ences were based on the correctness of the descriptions.

11.2. Prompt used for pre-trained LLM experi-
ments

The following prompt was used in our experiments with
pre-trained LLMs serving as the Diagnosis Agent to make
a diagnosis based on the provided descriptions:

Prompt: Answer the following question related to skin can-
cer. Only use one of the four options given at the end.

The image descriptions below are extracted from different
patches from the same whole slide image (WSI), please tell
me which class the image belongs to:

{descriptions}

The options are:

”diagnosis: (I) mildly dysplastic nevi, moderately dysplas-
tic nevi”

“diagnosis: (II) melanoma in situ and severely dysplastic
nevi”’

“diagnosis: (III) invasive melanoma stage pT1a”
”diagnosis: (IV) advanced invasive melanoma stage >
pT1b”

Only output the complete text of the option you choose.
Don’t add any more words.

12. Imitated Sampling Implementation

To simulate the navigation behavior of expert pathologists,
we developed an Imitated Sampling algorithm that gener-
ates patch sequences reflecting human visual exploration
of whole slide images (WSIs). This method mimics expert
viewing patterns by modeling statistical distributions across
multiple behavioral dimensions.

12.1. Data Collection and Distribution Modeling

We analyzed the viewing behavior of 12 board-certified
pathologists as they reviewed 45 histopathology WSIs.
From this, we extracted statistical distributions for:
* Zoom level frequencies
* Patch size distributions per zoom level
* Spatial transitions between consecutive patches
* Attention duration on specific regions

For each zoom level z € {1,5,10,20,40,50}, patch
width and height were modeled as normal distributions:

w~ N, 05), h~N(ui,of)

with values clipped to the empirically observed ranges
[wZ,,, wE ) and [RZ.  hE ]

12.2. Algorithmic Implementation

The Imitated Sampling algorithm proceeds in the following
steps:

Patch Count Determination: For each zoom level z, we
sample the number of patches n, using:

n; = N(Nnaan) X Pz

where p, = 278.48, o,, = 131.64, and p, denotes the em-
pirical frequency of patches at zoom level z.

Foreground Segmentation: Foreground tissue is seg-
mented using a multi-stage thresholding and morphological
pipeline:

Mbg = (I)thresh(la Tlower 7-upper)
Mfg = "Mbg
Mreﬁned = (I)close(-Z\/-[fg: K)
where ®yyesn 1s a pixel intensity thresholding function, —
denotes logical negation, and o is @ morphological clos-
ing operation with kernel K.

Patch Generation: For each zoom level:
1. Sample patch dimensions:
wNN(Mf‘),O'i,), hNN(,LLIZLvUIZz)

2. Randomly select a center coordinate (z,y) from the
foreground region (y,:

(x,y) ~ Uniform(£2,)
3. Accept the patch if it satisfies a tissue content threshold:

|{(’L,j) S Rm7y7w,h : Mreﬁned(iaj) # 0}‘ > tf"«’
w X h — 100

where t, is a zoom-dependent tissue coverage threshold
(ranging from 15% at zoom 1 to 80% at zoom 50).
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Figure 7. A comparison of descriptions generated by PathFinder’s Description Agent, GPT-40, and LLaVa-Med for sample ROI patches
selected by M-Path’s consensus panel of pathologists.
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Figure 8. Expert human pathologist preferences for each model, segmented by the reasons for their choices. Each subplot corresponds to
one pathologist and shows their ratings for PathFinder (Ours), LLaVA-Med, and GPT-4o.

Overlap Removal: To model realistic attention shifts and
avoid redundant sampling, we enforce a maximum overlap

criterion:
| R,NR j |

min(| Ry, | R;])

<0.3

where R; and R; are patch regions.

Coordinate Transformation:

Patch coordinates are

mapped back to the original image space:

X=x-2, Y=y-2z

W=w-z,

H=~h-z

12.3. Implementation Details

The implementation adapts thresholding parameters based
on zoom level, reflecting the increasing specificity required

at higher zoom levels. A 15x15 kernel is used for mor-
phological operations, selected to balance noise suppression

and tissue continuity.

To improve sampling reliability, the system includes

edge

retry counters for edge-related failures () and content-

1 1 content
based rejections (nggyy

difficult-to-segment regions.

This ensures robustness in

To further emulate expert pathologists’ adaptive explo-
ration, we implemented a residual patch propagation mech-

anism:

Nzl = Nzy1 + (nz

target actual
-n, )

This simulates the human tendency to increase magnifica-
tion when low-resolution views are inconclusive.



The final output is a sequence of N = ) n patches de-
noted as (X;,Y;, W;, H;, z;) fori = 1,2,..., N, capturing
the key characteristics of expert navigation: tissue priori-
tization, adaptive zooming, and spatial progression. Com-
pared to uniform or random sampling, Imitated Sampling
yields more representative and explainable trajectories for
downstream WSI analysis.

13. Advantages and Limitations

Efficiency: While our approach prioritizes diagnostic accu-
racy and interpretability, it is also designed with computa-
tional efficiency in mind. Rather than exhaustively process-
ing all possible regions in a WSI, which is often compu-
tationally prohibitive, PathFinder strategically selects and
processes only 50 patches per WSI. This targeted selec-
tion significantly reduces the overall computational load
and inference time, enabling faster analysis while maintain-
ing strong diagnostic performance. By avoiding exhaustive
search, PathFinder strikes a practical balance between accu-
racy, interpretability, and efficiency.

System Complexity: Although PathFinder introduces
more architectural complexity compared to simpler, single-
model baselines such as CONCH and MUSK, this added
complexity comes with clear benefits. PathFinder’s mod-
ular designvoffers enhanced flexibility and interpretabil-
ity. Each agent operates independently and can be eval-
uated, fine-tuned, or replaced without retraining the en-
tire pipeline, making the system more adaptable to dif-
ferent datasets and tasks. Despite its multi-agent setup,
PathFinder achieves strong performance, outperforming the
best baseline by 9% in diagnostic accuracy while also gen-
erating human-interpretable explanations through descrip-
tive patch-level outputs. This combination of accuracy and
transparency makes PathFinder a compelling solution for
high-stakes medical Al applications.

Generalizability: Identifying high-quality public datasets
suitable for WSI-level classification remains a challenge,
particularly due to the scarcity of datasets with reliable,
slide-level diagnostic labels. We evaluated our pipeline
on the TCGA-SKCM dataset. However, it is important
to note that its diagnostic labels are derived from broader
clinical context and metadata, rather than solely from his-
tological features present in the WSI. As a result, clas-
sification based on WSI content alone is inherently diffi-
cult. The best-performing baseline on this dataset achieved
an accuracy of 0.52. In comparison, our pipeline, when
training only the Diagnosis Agent, achieved an accuracy
of 0.54 using exhaustive patch search, and 0.50 using the
T5-Navigator for patch selection. Notably, in addition to
competitive accuracy, our pipeline provides explainability
through textual descriptions of selected patches. Further-
more, our Description Agent is trained on Quilt-1M, a di-
verse dataset covering 12 cancer types, and the modular ar-

chitecture of our agents supports easy transfer and adapta-
tion to new datasets, highlighting the potential for general-
izability across tasks and domains.

Hallucination Risk in MLLMs: To mitigate this issue, we
avoid general-purpose MLLMs and instead use a domain-
specific model. Our Description Agent is based on Quilt-
LLaVA, fine-tuned on histopathology data to produce con-
cise and factual descriptions. These descriptions are not
generated with zero-shot prompting but through supervised
instruction tuning. Our Diagnosis Agent is trained (not
prompted) on these domain-specific descriptions for classi-
fication, ensuring that the diagnosis is grounded in learned
mappings rather than open-ended language generation.



