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A. Related Works

Long-Tail Scenarios in Autonomous Driving. Driv-
ing datasets have evolved from KITTI [18] to more di-
verse collections like BDD100K [71], nuScenes [5], Mapil-
lary [50] and Cityscapes [13], incorporating advanced sen-
sor suites [7, 17, 59]. However, these datasets provide lim-
ited representation of long-tailed scenarios such as work
zones - for instance, nuScenes contains only 19 driven se-
quences with work zones [58] out of 1000 scenes. Com-
mercial self-driving vehicle deployments, while impressive
in common situations, also find it difficult to navigate work
zones, see Figure 1 for some failure examples collected
from social media.

Prior research on long-tailed driving scenarios has
largely focused on scene understanding. Datasets like
CODA [38] (with 1500 scenes containing long-tailed
objects), WildDash [72, 73] (with global weather and
lighting variations), SegmentMelfYouCan [6], and BDD-
Anomaly [23] focus almost exclusively on recognition,
rather than holistically addressing perception and naviga-
tion in scenarios like work zones. Another well-studied
long-tailed scenario is driving in adverse weather. Despite
data collection challenges, specialized datasets exist for
fog [3, 56], night [55, 71], and snow [3, 4], although these
also primarily target recognition. Figure 2 illustrates why
recognition alone is insufficient for self-driving in work
zones.

Work zones are complex, dynamic environments requir-
ing multi-level understanding, yet they’ve received little at-
tention due to the challenges in data mining [40] and task
formulation [58]. To our best knowledge, no large-scale
public dataset has specifically addressed work zones before
our contribution. While the MMI Open Dataset [27] pro-
vides raw videos collected for road inspection, we develop
scenario taxonomies and annotated work zones to create the

*Equal contribution. Work done at CMU.

Figure 1. Examples of work zone failures in a commercial self-
driving vehicle. While obtaining detailed failure reports of self-
driving cars is infeasible, customers of these companies regularly
post failure cases on social media. (a) The car failed to recognize
and observe a sign that mentions “DETOUR” and has a left arrow
graphic (Link). (b) The car fails to recognize and observe the Ar-
row Board, then fails to analyze the situation and finally does not
change the predicted pathway in response (Link).

ROADWork Dataset.

Work Zones in Autonomous Driving. Prior research has
addressed isolated work zone edge cases. For example, [20]
recognize safety barriers using a laser scanner while [19]
attempt to determine which lane lines define a valid lane
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in work zones. Later works [49, 58] attempted to clas-
sify and localize work zones, while others updated HD
maps [48, 52] with additional work zone information. Con-
current work [31] has proposed segmenting construction ar-
eas in videos to detect continuous zones from a distance.
However, no prior work systematically categorizes work
zones, formulates tasks, or curates data for autonomous
driving in these environments.

Language and Navigation in Work Zones. Unseen sce-
narios, such as newly appearing work zones along a route,
pose a major challenge for autonomous driving. Work zones
are a classic example of navigation in open-ended driving
scenes, requiring a higher level of semantic generalization.
Linguistic representations can help generalization, enabling
introspective explanations [30] that improve action predic-
tions [70].

Recently, Vision-Language Models (VLMs) [43] (and
Large Language Models (LLMs)) have been increasingly
applied to scene understanding, demonstrating state-of-the-
art generalization and reasoning capabilities. Recent ef-
forts [35, 47, 60, 66] have leveraged these VLMs and LLMs
to redefine scene understanding and subsequently, motion
planning. Navigating work zones require both visuospatial
and linguistic abilities. To address this, we propose a work
zone description benchmark to aid global scene understand-
ing in workzones.

For navigation in work zones, we argue that long horizon
trajectory forecasting is essential, as traditional structural
cues like lanes may be unreliable. Prior works [21, 39, 46]
explored a related setting: long horizon human trajectory
forecasting. Inspired by this line of work, we propose a
new pathway prediction problem and baselines to address
tackle this challenge.

B. ROADWork Dataset Description

We describe specific information regarding annotations pro-
tocol, data cleaning and processing procedures and other
relevant details.

B.1. Image Acquisition

Visual data were acquired from cameras mounted inside
a vehicle while driving through 18 US cities, resulting in
9650 images from three sources: (a) images that we cap-
tured in Pittsburgh (b) images that were semi-automatically
extracted from the Michelin Mobility Intelligence (MMI)
Open Dataset (formerly RoadBotics) [27] (c) Images that
were discovered in Mapillary [50], BDDI10OK [71] and
other other data sources by our models trained on data from
the first two sources.

Main Data Sources. To collect the first data subset of
the main dataset, we drove on urban, suburban, and rural
roads in Pittsburgh and captured 2,338 (32%) images with

an iPhone 14 Pro Max paired with a Bluetooth remote trig-
ger. Next, images from other U.S. cities were sourced from
videos in the MMI Open Dataset. A combination of De-
tic [77] and a cone detector trained on NuScenes [5] were
used to mine frames presumed to contain roadwork zones
with detector confidence at 25% — ensuring high recall with
the expense of low precision. This process yielded approx-
imately 100000 candidate images. We then manually se-
lected 5078 (68%) images containing unique road objects
or roadwork zones, prioritizing individual scene diversity.
The distribution of images across U.S. cities is shown in
Figure 3.

Discovered Data Sources. In Section 3 of the main
manuscript, we described our model and the work zone
classification rule that we use to discover images. We dis-
covered work zone images from common driving datasets
(a) 558 images from Mappilary [50] and (b) 411 images
from BDD10OK [71]. Additionally, we exploit other data
sources to curate 1265 images into various subsets contain-
ing work zones (See Figure 4 for examples). These subsets
were further manually filtered to remove redundant images.
We describe the subsets below,

* Vehicle-Pittsburgh Discovered Subset. We drove a ve-
hicle in Pittsburgh during various weather and lighting
conditions, collecting approximately 157 images with
work zones. This subset specifically includes examples
captured in rain, fog, snow, and at night.

* Vehicle-Rural Discovered Subset. We collected 308 im-
ages by driving on rural roads and highways across mul-
tiple U.S. states. This subset includes work zones on two-
lane roads, interstate highways, and in small towns, cap-
tured during both day and night conditions. This subset
was captured using a dashcam, and shows significant ra-
dial distortion.

* Bus-Pittsburgh Discovered Subset. We obtained 800
work zone images from a commuter bus that followed
a fixed route in Pittsburgh over the course of two years.
This includes 272 images from the front-facing camera
and 528 images from side-mounted cameras with unqiue
viewpoints, capturing work zones in all weather condi-
tions and times of day.

B.2. Annotations

Scene Tags. We labeled images with scene tags to capture
weather, time of day, travel alterations, road environment,
and whether the work zone is active (See Table 1). The
presence of roadwork objects in a scene does not necessarily
indicate an active work zone, e.g., a cone in a parking lot.
Work zones are labeled as active work zone, not active work
zone, or unsure. An active work zone includes roadwork as
well as any activity that could potentially impact vehicles
or pedestrians mobility. To qualify, objects must be located
on a road or sidewalk where a vehicle or pedestrian could



Work vehicle on left side of road. Worker on left
side of road. Worker on right side of road. Fence
around work zone on right side of road and fully
blocking right sidewalk. Work vehicle on right
side of road.

Fence around work zone on right side of road.
Worker and TTC sign on right sidewalk.

Worker holding TTC sign on right side of road.
Work vehicle on left side of road. Barriers and
fence around work zone on right side of road.

Figure 2. Recognition is Not Enough for Navigating Work Zones. Work zones are dynamic and rare occurrences, thus it is challenging
to navigate through them. Depicted is a work zone navigation sequence with sign text detected by Glass [54], work zone descriptions
generated by fine-tuned LLaVA-1.5A [44] (incorrect description indicated in red) and car trajectory estimated via COLMAP [57]. Observe
that initially the worker is holding a “STOP” sign, but later switches to a “SLOW” sign as the truck passes, indicating that the road is open
for traversal by the ego-vehicle. This example shows mere object recognition is not enough for navigation; continuous fine grained scene

observation and global scene analysis are both necessary.

travel. Approximately 80% images were labeled as active
work zones.

Scene Descriptions. The associated descriptions detail
key work zone elements, their locations, and relationships
within the scene. They specify the approximate locations of
work zones and objects on the road or sidewalk while also
conveying the relative positioning of objects in relation to
the work zone and other scene elements. To ensure con-
sistency, all descriptions were written by a single annotator
using a standardized vocabulary.

Object Annotations. We identified 15 categories of objects
commonly found in work zones. These include objects that
define temporary traffic control pathways, such as cones and
tubular markers, fences, barriers, and drums. Additionally,
we annotated objects that help navigation, including tempo-
rary traffic control (TTC) signs, TTC message boards and
arrow boards. We also annotated Workers, Work Vehicles,
Police officers and Police Vehicles, since they influence and
direct traffic in work zones. See Table | for the full list of
annotated work zone objects.

The object annotation workflow combined automatic and
manual labeling, followed by manual verification. To re-
duce annotation effort, we used Detic [77] with a custom
vocabulary of “cone, drum, vehicle, traffic sign” to boot-
strap annotations on our captured images. However, cat-
egory predictions from Detic [77] were discarded as due
to frequent classification errors. Polygons were simplified
using the Vishwalingam-Wyatt algorithm [62] to facilitate
editing. All object categories were manually assigned, and
any additional objects in these images, as well as objects
in all other images, were manually segmented and catego-
rized. Finally, all annotations were manually verified by one

Object Categories ‘ Weather Alteration Time Env.
Cone Tubular Marker Partly Cloudy  Fully Blocked =~ Dark Urban
Fence Vertical Panel Sunny Lane Shift Light Suburban
Worker Work Equipment Unknown Partially Blckd.  Twilight ~ Highway
Work Vehicle ~ Arrow Board Wet Other Unknown  Rural
TTC Sign TTC Msg. Board | Cloudy None Other Unknown
Drum Police Vehicle Fog or Mist Other
Barricade Police Officer Ice
Barrier Othr Rdwork Objs | Other

Table 1. Work Zone Object Categories and Scene Level Tags.
The left side lists manually annotated object categories, while the
right side present scene-level tags that describe various work zone
properties.

person.

Fine-Grained Object Annotations. Objects that are par-
tially blocked by other objects or truncated were labeled
as “occluded”. A few object categories, including arrow
boards, TTC signs, and TTC message boards, have addi-
tional annotations. For example, arrow board states (“OFF”,
“LEFT”, “RIGHT”, “NONE”) is annotated (See Figure 3
for the distribution of arrow board states).

TTC sign and TTC message boards generally contain
both “text” and “graphics”. We also annotated graphic de-
scriptions (e.g. “LEFT ARROW™) and associated text for
each sign (e.g. “DETOUR AHEAD”). Additionally, text
or graphics were marked as “occluded” if the object is par-
tially occluded or truncated by the image boundary. Sign
text and graphic descriptions were parsed to identify com-
mon types of TTC signs (See Figure 3). The distribution
of TTC sign graphics and text follows a long-tailed pattern
(See Figure 3), with 62 and 360 different types annotated,
respectively.
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Figure 3. ROADWork Dataset Statistics. (a) U.S. cities represented in the dataset, with geotagged images shown for Denver, Colorado.
(b) Number of dataset images for each city. (c) Distribution of weather conditions. (d) Distribution of road-network alterations for work

zZones.

(e) Arrow board conditions, where “None” indicates that the arrow board’s LEDs are not visible. (f) Distribution of frequent

roadwork objects, which are of the order of thousands of total instances. (g) Distribution of uncommon roadwork objects which have a few
hundred instances. (h) Distribution of the most common TTC signs (both text and graphics), which have a few hundred instances each.

(i-j) Distribution of the

top 25 observed TTC signs by graphics and text.



Figure 4. ROADWork: Additional In-The-Wild Discovered and Annotated Work Zone Images. Following the discovery process
described in Section 3 of the main manuscript, we discovered and annotated an additional 1265 work zones images from a variety of
sources apart from 969 images discovered in BDD100K [71] and Mapillary [50]. (a) The top row depicts Vehicle-Pittsburgh subset images
we discovered from driving in Pittsburgh (around 157 images). The subset consists of work zone images taken in bad weather and night.
(b) The middle row depicts Vehicle-Rural subset images we driving on rural areas and highways in the US (308 images). The subset
consists of work zone images taken in both day and night. (¢) The bottom row depicts images discovered from a Bus that was driven on a
fixed route in Pittsburgh. We discovered 272 images captured from the front camera, while 528 images were captured from other cameras
mounted on the bus. Images were captured in all conditions, including bad weather and night.

Semantic Segmentation. We manually segmented roads,
sidewalks, and a sparse sampling of bicycle lanes to provide
contextual localization for work zone objects.

B.3. Metric 3D Reconstruction and Pathway Gen-
eration from Smartphone Videos

Leveraging Smartphone-As-Dashcam Videos. Our work
utilizes the MMI Open Data Set [27], which contains ex-
tensive video footage captured from a Samsung Galaxy S9
smartphone, for which camera intrinsics are known. From
this dataset, we extract 30-second video snippets corre-
sponding to our annotated work zones. These snippets are
then downsampled to 5 FPS to yield the final set of smart-
phone images for our 3D reconstruction pipeline.

Leverging 3D Reconstruction As Anchor. Our primary
goal is to produce an accurate, metric-scale, and spatially-
aligned 3D reconstruction from the collection of smart-
phone videos, which have weakly-aligned GPS metadata.
With recent advances in Visual Place Recognition [1], it’s

likely that the weakly-aligned GPS metadata might also be
superfluous in the future.

The core of our approach is to anchor our reconstruc-
tion to a set of images with high-quality pose informa-
tion [64, 65]. To achieve this, we use the initial, coarse GPS
from each video to query and retrieve nearby Google Street
View panoramas. We then generate multiple perspective
views from each panorama, following the systematic sam-
pling strategy described in [64]. These views, along with
the panoramas’ accurate GPS and pose data from large-
scale SfM pipelines [33] that Google Street View is based
on, serve as the high-quality georeferencing anchor for our
3D reconstructions.

Feature Matching and SfM. To reconstruct from this het-
erogeneous set of smartphone and Street View images, we
must establish robust feature matches. As a brute-force all-
pairs matching approach is computationally infeasible, we
adopt a retrieval-based strategy. We first compute a global
descriptor for every image using EigenPlaces [2]. We then



use these features to find the top 20 nearest neighbors for
each image using the Faiss library [15], efficiently identi-
fying pairs with likely visual overlap. For these candidate
pairs, we perform local feature matching by extracting key-
points and descriptors with SuperPoint [14] and matching
them with LightGlue [42]. With this graph of matched im-
ages, we perform Structure-from-Motion (SfM) using the
global solver GLOMAP [51] to recover camera poses and
a sparse 3D point cloud. COLMAP [57] is also applicable
but GLOMAP [51] is an order-of-magnitude faster.
Georeferencing and Trajectory Generation. A key step is
georeferencing the resulting 3D reconstruction such that we
align the reconstruction to a real-world coordinate system
via a 7-DoF similarity transformation. Following the proce-
dure described in [63, 64], this is computed by minimizing
the discrepancy between the recovered poses of the Street
View images and their ground-truth GPS data, which we
project into an Earth-Centered, Earth-Fixed (ECEF) global
coordinate frame. We explicitly discard the noisy GPS
from the smartphone videos during this alignment, relying
solely on the high-quality Street View data for metric ac-
curacy [33]. The result is a single, georeferenced sparse
reconstruction where the poses for all smartphone images
are accurately localized, forming precise 3D trajectories.
We then fit a ground plane to the reconstruction by using
a Mask2Former [12] semantic segmentation model to iden-
tify 3D points corresponding to the road surface. By pro-
jecting the 3D camera poses onto this fitted plane, we define
the vehicle’s 3D path, which is then projected back into the
source images to create 2D drivable trajectories. Visualiza-
tion of our trajectories can be viewed in Figure 5.
Trajectories to Waypoints. To standardize the trajectories
for our prediction task, we convert them into a fixed number
of waypoints. For each sequence, we identify the longest
continuous segment of the 2D trajectory that remains on the
road. We then fit a spline to this segment and sample 20
equidistant waypoints. For the pathway prediction problem
discussed in the main manuscript, the first five waypoints
serve as the observed path (input), the final waypoint repre-
sents the goal, and the intermediate 14 points constitute the
future pathway to be predicted.

B.4. Other Details

Number of Workzones. Counting work zones is chal-
lenging, as they could extend for miles. Should such long
stretches be considered a single work zone? Additionally,
workzones resemble the Ship of Theseus — they evolve over
time while remaining at the same location for months or
even years. These spatio-temporal factors make it difficult
to define and count work zones accurately.

In our analysis, we counted workzones based on loca-
tions alone, clustering images within a 20m radius as a
single work zone, regardless of when they were captured.

As a result, ROADWork dataset contains instances of work
zones at the same location observed across months or years.
Besides, we used the DBSCAN algorithm to cluster work-
zones images based on the the noisy GPS locations. Conse-
quently, we obtained 5024 clusters at a 20m threshold and
4759 such clusters at a 30m threshold. Based on these re-
sults, we estimate that our dataset contains approximately
5,000 work zones.

More Visualizations and Details. A full description of all
annotated categories is provided in Table 12, while the dis-
tribution of each class across all cities is shown in Table 13.

C. Additional Analysis and Results
C.1. Recognizing Work Zones

Method AP AP50 AP75 AP, AP, AP
Open Vocabulary Detectors
Grounding DINO (0365) [45] 6.6 9.5 7.0 4.0 7.1 10.5

Supervised with ROADWork Dataset

Faster R-CNN [53] 250 424 258 127  30.6 36.0
DiffusionDet [9] 31.1  50.1 322 183 30.8 420
Grounding DINO [45] 379 542 398 21.7 390 519
DINO [74] 399 572 422 240 38.6 521

Table 2. Detecting Work Zone Objects. We train detection
models [9, 74] on the ROADWork dataset using a coarse vocab-
ulary. The open-vocabulary detector [45] struggle to recognize
work zone objects, but incorporating our data significantly im-
proves its performance. Overall, our supervised models achieve
substantially better results ( ).

Detecting Work Zone Objects. As mentioned in Section 3
of the main manuscript, open-vocabulary detectors such as
Grounding DINO [45] follow similar trends to Detic [77]
and OpenSeeD [69]. As shown in Table 2, supervised mod-
els like DiffusionDet [9] and DINO [74] significantly out-
perform Grounding DINO ( ). Fortunately, fine-
tuning Grounding DINO [45] on our data almost matches
the performance to DINO [74]. However, DINO [74] is
still better than Grounding DINO [45] by , likely
reflecting the trade-off between a specialized detector and
an open-vocabulary detector that generalizes well across a
larger number of categories.

Zero-Shot Detection On Discovered Workzones. In Sec-
tion 3 of the main manuscript, we discovered 969 images
in BDD100OK [71] and Mapillary [50] datasets. While de-
tectors trained on the ROADWork dataset facilitated the
discovery of work zones around the world, their perfor-
mance on these in-the-wild images has not been evalu-
ated. To assess generalization, we manually annotated the
969 in-the-wild work zone images discovered in BDD and
Mapillary (See Table 4 of the main manuscript for work-
zone discovery experiments). As shown in Table 3, the
open-vocabulary detector Grounding DINO achieves signif-
icantly better zero-shot performance after being fine-tuned



Figure 5. Metric Geo-referenced Trajectories from our 3D Reconstruction Pipeline. We show examples of trajectories obtained from
our reconstruction pipeline overlayed on birds-eye-view maps retrieved from OpenStreetMaps. We show some interesting situations for
planning which require all aspects of scene perception, the trajectories are shown for a 4 second future horizon. (a-c) Depict a construction
zone with two lane changes, first lane change to the right is marked by a TTC sign, while the second lane change is marked with drums.
(d-e) Depict a construction zone marked with TTC signs and Vertical Panels. While there exists “free” space to navigate to the right most
lane (where the workers are), the objects helpfully mark the actual drivable regions. Identifying drivable regions is still challenging for
self-driving cars [16, 34]. (f) Cones behind a work zone vehicle mark it as a static object blocking the lane. This cue guides the cars to
change the lane towards oncoming traffic to pass this work zone vehicle.

Method AP AP50 APT5 AP, AP, AP
Mapillary (Discovered In-The-Wild)
Grounding DINO [45] (pre-trained) 5.1 7.9 5.3 22 53 9l

DiffusionDet [9] 13.1 243 12.5 52 126 234
DINO [74] 19.7 321 202 100 18.0 31.8
Grounding DINO [45] 228 352 23.2 79 19.6 37.6

case Grounding DINO [45] shows improved generalization
( ) over DINO [74].

Method AP AP50 APT5 AP, AP, AP

BDD100K (Discovered In-The-Wild)
Grounding DINO [45] (pre-trained) 8.8 13.0 9.5 6.6 109 117

DiffusionDet [9] 185 332 179 121 207 279
DINO [74] 27.3 430 282 17.0 288 362
Grounding DINO [45] 285 432 294 201 31.8 38.6

Table 3. Zero-Shot Detection On Discovered Workzones From
BDD100K And Mapillary. For discovered-in-the-wild work
zone images, fine-tuning the open-vocabulary detector Ground-
ing DINO on our ROADWork dataset improves performance by

on Mapillary and on BDD100K. Addition-
ally, the supervised detectors DiffusionDet [9] and DINO [74]
achieve promising performance.

on our dataset, while supervised detectors also delivers
promising zero-shot performance. Interestingly, compared
to in-distribution performance (Table 2) where DINO [74]
is better than Grounding DINO [45] by , in this

Mapillary (Discovered In-The-Wild)
Detic [77] (pre-trained) 2.9 4.5 2.9 0.6 3.3 5.4

Mask R-CNN [22] 144 254 14.2 2.8 141 269
Mask DINO [37] 21.6 355 22.5 6.9 19 372
BDD100K (Discovered In-The-Wild)
Detic [77] (pre-trained) 3.7 58 4 3 5.1 4
Mask R-CNN [22] 19.8 338 21 12.8 233 28.1
Mask DINO [37] 29.1  46.6 31.3 18.1 314 455
Table 4. Zero-Shot Instance Segmentation on Discovered

Workzones from BDD100K and Mapillary. As we noted in Sec-
tion3, Detic [77] performed miserably for discovering work zones.
We also observe that Detic’s zero-shot performance on work zone
images from Mapillary [50] and BDD100K [71] follows the trends
from the main manuscript. Similarly, Mask DINO [37] performs
significantly better on both out-of-distribution datasets.

Zero-Shot Segmentation on Discovered Workzones. We
evaluate open-vocabulary detectors and ROADWork super-



vised models on discovered images (See Section3) — which
are out-of-distribution for all the models. Pre-trained Detic
performs poorly on both Mapillary (2.9 AP) and BDD100K
(3.7 AP), reinforcing our observation that work zone objects
are severely underrepresented in foundation model training
data. In contrast, models trained on the ROADWork dataset
show substantial improvements. Mask DINO [37] achieves

on Mapillary and on BDD100K, repre-
senting gains of and respectively over
pre-trained Detic. Even the simpler Mask R-CNN architec-
ture demonstrates significant improvements when trained
on our dataset.

Method AP APT5 AP APT5 AP APT5 AP APT5
Vehicle - Pittsburgh | Vehicle - Rural | Pittsburgh Bus - Front Cam. | Pittsburgh Bus - Side Cam.

Detic (pre-trained) 5.1 59 2.4 25 .6 34 3. 3.8

Mask R-CNN 28.1 30.9 20.5 20.9 20 20.9 20.1 219

Mask DINO 38 39.6 30.1 30.0 29.4 30.4 326 35.6

Table 5. Zero-Shot Instance Segmentation Results On Other
Discovered Work Zone Images. We evaluate instance segmen-
tation models on additional discovered work zone subsets (See
Figure 13) from various sources. Consistent with our prior find-
ings, pre-trained Detic struggles on these specialized subsets,
while Mask DINO trained on ROADWork significantly outper-
forms both pre-trained models and simpler architectures like Mask
R-CNN. The performance gap is particularly noticeable in more
challenging conditions like rural areas and bus-mounted camera
views.

Zero-Shot Instance Segmentation Results On Other Dis-
covered Work Zone Images. We further evaluate our mod-
els on additional discovered work zone subsets (Vehicle-
Pittsburgh, Vehicle-Rural, and Bus-Pittsburgh) to assess
generalization under varying conditions. As shown in Ta-
ble 5 pre-trained Detic [77] performs miserably across all
subsets, with AP values ranging from 2.4 to 5.1. This per-
formance is particularly poor in the Vehicle-Rural subset,
where the AP is merely 2.4, highlighting the difficulty of
segmenting work zones in rural environments. In contrast,
models trained on ROADWork show substantially better
performance, with Mask DINO achieving the best results
across all subsets ( on Vehicle-Pittsburgh,

on Vehicle-Rural, on Bus-Pittsburgh Front
Camera, and on Bus-Pittsburgh Side Camera
compared to pre-trained Detic). These results further val-
idate our observations from the main manuscript, confirm-
ing that foundation models struggle with work zone recog-
nition in diverse conditions, while our ROADWork -trained
models generalize effectively across various scenarios and
viewpoints.
Does fine-tuning a open-vocabulary foundation model
on ROADWork cause overfitting? Large-scale founda-
tion open-vocabulary model trained on millions of im-
ages may forget previously learned distributions when fine-
tuned on additional data [26]. This effect is more pro-
nounced when the dataset used for fine-tuning is small,
leading to overfitting on the target data. To assess whether

Training Data Test Data AP AP50 AP7T5 AP, AP, AP
Obj365 ROADWork 6.6 9.5 7.0 4.0 7.1 10.5
Obj365 + ROADWork ROADWork 37.9 542 398 21.7 390 519
Obj365 Cityscapes 342 50.2 359 136 360 562
Obj365 + ROADWork  Cityscapes 344 522 342 117 334 540
Obj365 BDDIOOK  23.6 406 232 92 278 495

Obj365 + ROADWork BDDI00K 237 409 22.8 84 272 500

Table 6. Does fine-tuning a open-vocabulary foundation model
on ROADWork cause overfitting? Large foundation Models are
prone to overfitting when trained on small datasets. To assess
whether our dataset is large enough to mitigate overfitting, we
finetune Grounding DINO [45] and evaluate it on common driv-
ing datasets including Cityscapes [13] and BDD100K [71], using
their respective categories. We observe that fine-tuning signifi-
cantly improves performance on ROADWork dataset ( ),
while performance on Cityscapes ( ) and BDD100K (
) does not degrade.

if ROADWork dataset is large enough to mitigate over-
fitting, we evaluate Grounding DINO [45] on common
driving datasets Cityscapes [13] and BDD100OK [71] with
their label set as the vocabulary. We then finetune the
model on ROADWork , and re-evaluate the detector on the
same datasets with their vocabulary. As shown in Table 6,
fine-tuning significantly improves performance on ROAD-
Work ( ), while performance marginally improves
on Cityscapes [13] ( )or BDD100OK [71] (A /7). We
hypothesize that this is due to the small domain gap be-
tween ROADWork dataset and common driving datasets.
Hence, image features might remain consistent even when
fine-tuned on our data. We leave further exploration of this
phenomenon for future work.

Supervision AP AP50 APT5 AP, AP, AP
Psuedo-Segmentations from SAM [32]

Bbox 226 447 20.9 143 296 309

Bbox + 5 pts 233 449 22.1 177 29.6 304

Bbox + 10pts  23.5 456 224 153 300 302

Ground Truth 27.6 47.2 291 18.7 335 359

Table 7. Are Manual Segmentations Still Needed? Results
with Boundary IOU. We train instance segmentation models [22]
with varying levels of supervision from the ROADWork dataset
using SAM [32]. Unlike the results in the main paper, we evalu-
ate performance using Boundary IOU [11], a metric more sensi-
tive to boundary errors than standard IOU. We observe a larger
improvement using Boundary IOU at higher thresholds (

), which indicates boundary quality improvements
with manual annotations compared to psuedo ground truth anno-
tations.

Are Manual Segmentations Still Needed? We posited
in Section 3 of the main manuscript that some of the ob-
ject categories in ROADWork exhibit irregular shapes. We
present additional results in Table 7, computing AP using
the Boundary IOU [1 1] metric (AP;or(p)). This metric pe-
nalizes boundary errors more strictly, making it more suit-



able for evaluating segmentation quality, particularly for ir-
regularly shaped work zone objects such as arrow boards
and work vehicles (e.g., “cranes”). Compared to the results
in Section 3 of the main manuscript, we find that the per-
formance gap at tighter thresholds is even more pronounced
( ) compared to from Table 3
of the main manuscript. This further underscores that man-
ual ground-truth masks yield higher quality boundaries than
those predicted by SAM [32], reinforcing the need for man-
ual segmentations of rare work zone objects.

C.1.1. Other Interesting Recognition Scenarios

ROADWork dataset enables the study of various scene un-
derstanding challenges beyond those considered of the main
manuscript.

50

a5 60
40 g
g40

/35

30 = s
H / — AP %20
225 = AP50

20 — AP75 0

15 //~ APM
10 — APl

== 2PCNet (Source-only)
= 2PCNet
= 2PCNet (Source + Target)

Drum
Sidewalk

Fence
Barrier

TTC Sign
Worker
Barricade
Cone
Vertical Panel
Arrow Board

TTC Msg. Board

Police Officer
Police Vehicle
Bike Lane
Work Vehicle
Tubular Marker

2 Cities
4 Cities
6 Cities
8 Cities
ies

ies

ies

ies

ities

Work Equipment

10 Ci
12 Ci
14 Ci
16 Ci
18 Ci
G

Figure 6. Adapting to New Geographies. (a) Starting from Pitts-
burgh, we progressively add data from new cities to train a de-
tector, leading to significant accuracy gains ( with all
cities). (b) Geographic adaptation remains challenging. Train-
ing on source data only serves as our baseline, while training on
both source and target data represents the . Adapta-
tion methods such as 2PCNet [29] provide limited improvement
over the baseline. For example, the upper-bound gap of adapta-
tion method for “barricade” (-13.8 A Ps0) and for “vertical panel”
(-20.7 APs0) is very large.

Adapting to New Geographies. While we discovered
work zones in new geographies (Figure 5 of the main
manuscript), does our recognition model maintain the same
performance? Domain adaptation methods have explored
geographic adaptation, but mainly across countries [24, 28,
61, 67, 76] and mostly for common objects like cars [67].
Obtaining supervised data for new geographies , such as
new cities in our case, is expensive to scale. We make two
observations: (a) A geographic domain gap exists in our
data, and (b) state-of-the-art adaptation methods do not ad-
dress this gap.

To demonstrate these observations, we conduct a simple
experiment. We train work zone detector using data from
Pittsburgh and test it on all cities. After that, we add data
from the city with most samples and retrain the model. Ac-
curacy improves by We continue adding data
from other cities, leading to a final improvement of

(Figure 6 (a)).
Next, we consider the unsupervised domain adaptation

problem. We treat data from Pittsburgh as source domain,
where both images and labels are available during training.
Data from other cities (excluding Pittsburgh) forms the tar-
get domain, where only images are available during training
while performing adaptation. We evaluate the model on the
target domain.

Following state-of-the-art adaptation methods [29, 76],
we use a Faster R-CNN Resnet50 backbone for training,
assuming different levels of available target domain data.
Training on source data only is our baseline (red in Figure 6
(b)), whereas upper bound is trained on both labeled source
and labeled target data (depicted in ). State-of-the-art
adaptation methods [29, 76] (depicted in blue) do not sig-
nificantly improve adaptation over baseline. Compared to
the upper bound in Figure 6 (b), performance gaps remain
for heavily represented objects like cones (-5.4 A P5y) and
drums (-12.6 A Ps), and also for rare objects like barricades
(-13.8 A P5() and vertical panels (-20.7 A P5). Our ROAD-
Work dataset highlights the geographic domain gap prob-
lem, underscoring the need for new algorithms to bridge
this gap.

Method AP AP50 AP75 AP, AP, AP
CS Psuedo Labels 353 622 35.4 172 369 506
UniDetector [68] 37.3  63.6 N/A 146 379 56.1

Cityscapes (Pretrained)  40.3 65.3 42.1 172 409 614

Table 8. Label Unification. We train a bounding box detector on
unified Cityscapes [ 13] and ROADWork label space by (a) pseudo-
labeling our dataset using a pretrained Cityscapes [13] (CS) model
(b) via UniDetector [68]. Testing on Cityscapes [13] and com-
pared to a pretrained model solely trained on Cityscapes [13] la-
bels, we observe significant degradation when trained on unified
label space while UniDetector [68] improves the performance over
naive pseudo-labeling.

Label Unification. Suppose we aim to train a unified de-
tector that detects both common objects like cars from a
common driving dataset and rare objects from the ROAD-
Work dataset simultaneously. This requires label unifica-
tion. While practical, unifying the label space is a challeng-
ing task [68, 75] — training a model on a unified set of cat-
egories reduces performance compared to specialized mod-
els individually trained on each dataset. One reason is due
to the presence of unlabeled instances of a particular cat-
egory in the unified dataset, another could be due concept
overlaps between two labels in the unified dataset. To assess
this observation, we consider the Cityscapes [13] bounding
box dataset in addition to our ROADWork dataset, using
UniDetector [68] with a Faster R-CNN model. We train
our model on the unified label space of Cityscapes (com-
mon objects) and ROADWork dataset (long-tailed objects)
— (a) by employing a pre-trained detector (see Section 3)
to pseudo-label the ROADWork dataset. (b) employing the
method proposed by UniDetector [68]. When testing our



unified models on the Cityscapes validation set, we observe
a considerable drop in performance (-5.0 AP) when naive
pseudo-labeling is used. However, UniDetector [68] closes
the gap with the Cityscapes pre-trained model by improving
the performance by over naive pseudo-labeling.

C.2. Analyzing Work Zones

Pretrained Size BLEU@4 METEOR ROUGE CIDEr
LLaVA-1.5 [44] 7B 0.4 11.0 9.4 0
LLaVA-1.5 [44] 13B 0.3 9.8 8.0 0
LLaVA-NEXT [36,44] 13B 0.2 9.4 6.9 0
LLaVA-NEXT [36, 44] 34B 0.3 9.3 6.9 0
Fine-tuned

LLaVA-1.5 [44] 7B 27.0 24.7 48.0 112.1
LLaVA-1.5 [44] 13B 27.7 25.1 48.6 113.1
LLaVA-NEXT [36] 13B 28.2 253 48.3 116.4
LLaVA-NEXT [36] 34B 284 26.1 47.2 113.2

Table 9. Newer and Larger Vision-Language Models (VLMs).
Consistent with the poor performance trends in Section 5 of the
main manuscript, larger pretrained VLMs (13B-34B parameters)
also fail to describe work zones. Switching to a newer genera-
tion of VLMs [36] does not improve performance, reinforcing the
under-representation of work zones in existing large-scale training
datasets. Fine-tuning helps, but even a 34B model provides only a
marginal improvement ( ).

Newer and Larger Vision-Language Models (VLMs).
We performed our experiments in Section 5 of the main
manuscript using LLaVA-1.5-7B. However, two key ques-
tions arise: (a) Do larger VLMs also struggle with work
zones descriptions? (b) Are newer VLMs such as LLaVA-
NEXT [36] better at describing work zones than older mod-
els?

As shown in Table 9, pre-trained VLMs of all sizes
perform poorly on work zones unless they are fine-tuned
on ROADWork dataset. Unfortunately, even the larger
LLaVA-NEXT-34B model provides only a marginally per-
formance gain (e.g. ) over LLaVA-1.5-
7B [44]. Moreover, newer VLMs like LLaVA-NEXT [36]
do not significantly outperform the previous generation of
VLMs, likely because they still lack exposure to work zone
images. Our ROADWork dataset fills that gap, advancing
high-level scene understanding in work zones.

Does fine-tuning a vision-language foundation model
on ROADWork cause overfitting? In Section C.1 we
asked if fine-tuned open vocabulary models forget previ-
ously learned distributions when trained on our ROAD-
Work dataset. A similar question applies to vision-language
foundation models, which we investigate here. We evalu-
ate two models on COCO-Captions [10], a dataset that pro-
vides captions for many real-world images. To test our hy-
pothesis, we evaluate two models (a) a pretrained LLaVA-
1.5-7B [44] model (b) a LLaVA-1.5-7B additionally fine-
tuned on the ROADWork dataset. The input prompt to both
the model is “Describe the given image in detail.” Our

Methods Dataset BLEU@4 METEOR ROUGE CIDER
LLaVA-1.5-7B  LLaVA 4.7 18.1 18.9 0
LLaVA-1.5-7B  LLaVA + ROADWork 12.6 16.9 37.5 59.0

Table 10. Does fine-tuning a vision-language foundation model
on ROADWork cause overfitting? Large-scale vision-language
models trained on millions of images risk overfit and catastrophic
forgetting of prior learned distributions when trained on small tar-
get datasets. We test this by evaluating LLaVA-7B [44] models
on COCO-Captions [10]. We evaluate using the pretrained model
and model fine-tuned on ROADWork data. Surprisingly, the fine-
tuned model does not degrade in performance and instead shows
significant improvements ( ).

findings are reported in Table 10. Surprisingly, contrary
to our expectations, the fine-tuned model performs better
on almost all metrics. Further analysis suggests that the
captioning style of COCO-Captions [10] validation set is
more similar to the ferse and direct scene descriptions of
the ROADWork dataset, whereas the original LLaVA-1.5-
7B [44] training data is more detailed and flowery. We hy-
pothesize that fine-tuning on our ROADWork dataset im-
proved model alignment for captioning tasks. We leave fur-
ther investigation to future work.

C.3. Driving through Work Zones

Metric AE% < 60 vs Pixel level metrics [46]. [46]
presents results on pixel level metrics like Average Dis-
placement Error (ADE) and Final Displacement Error
(FDE), we also report those metrics. However, we believe
AE% < 6 measures model performance more fairly in au-
tonomous driving situations. This is because pixel level
metrics like average displacement error [46] but do not ac-
count for camera’s field of view in the ego-car’s viewpoint.
We have access to the camera instrinsics /& and the angular
error is computed by finding the angle between ground truth
point p and predicted point p in pixel coordinates,

(K~'p) - (Klﬁ))
1K= pll 11|

AB () = o5 (

Now, we define AE% < 0 as the percentage of predictions
whose angular error is within a threshold 6. Do note hori-
zontal field of view of our images are around 50°.

Pathway Prediction Results with Pixel Level metrics.
Nevertheless, like [46], we also report pixel level displace-
ment metrics. Table 11 shows goal and pathway results,
Final Displacement Error (FDE) is the pixel error between
the predicted goal and the actual goal while Average Dis-
placement Error (ADE) is the error between predicted path-
way and actual pathway. We observe that ROADWork im-
proves both FDE ( ) and ADE ( ). We also
bin the pathways in terms of curvature, and observe that
paths with higher curvature are difficult to predict, how-
ever, model trained on ROADWork dataset improves FDE



Method All Paths Low Curvature Medium Curvature High Curvature
ADE FDE ADE FDE ADE FDE ADE  FDE

YNet [46] w/ Pretrained Segm. [13] 31.28 102.7 2828 9592 29.84 102.39 40.76  113.38

YNet [46] w/ ROADWork Segm. 22.68 80.78 2241 7533 21.82 83.28 30.21 84.58

Table 11. Pathway Prediction in Images. We employ YNet [46] with a segmentation model trained on Cityscapes [13] as our baseline,
and train a segmentation model with ROADWork dataset, and we observe that work zone object segmentations improve pathway and goal
predictions. Displacement Error (ADE) and Final Displacement Error (FDE) captures the error of predicted pathway and goal from the
ground truth pathway and goal respectively. We also report results for different thresholds of average curvatures, hypothesizing that it is
more difficult to navigate workzones where pathways are more irregular. We do observe that displacement errors of both predicted pathway
and goal is higher at the higher curvature threshold.

( ) and ADE ( ) in those cases.

Visual Results Figure 7 shows predictions in a sequence
— we observe that the trajectory heatmap is dynamic and
stochastic employing different scene level cues while fore-
casting trajectories (such as locations of other vehicles nav-
igating the same work zone or the available free space in
the work zone). Figure 9 shows some of the failure cases.
For instance, Figure 9 (c) shows predicting multiple goals
is difficult and the models fails at an intersection.

D. Implementation Details

Detecting Work Zone Objects. We employ the pre-trained
open vocabulary models [45, 69, 77] as is and follow
their custom vocabulary protocol. For training Mask R-
CNN [22], we use the mmdetection [8] library initialized
with COCO [41] weights. We use the default model zoo
parameters with the 1x schedule. For DINO [74], Mask
DINO [37] and DiffusionDet [9], we use official codebases
and weights. We employ the simple copy-paste implemen-
tation from mmdetection [8] and use the default parameters.
Adapting to New Geographies We follow the same pre-
train and adaptation protocol described in 2PCNet [29].
Generating Work Zone Descriptions. To circumvent
memory constraints, we train models via low rank adap-
tation (LORA) [25]. We also hypothesized utilzing object
predictions as context would improve description quality.
We compose the coarse vocabulary work zone object de-
tector (from Section 3 in the main paper) to align our de-
scriptions. We employ rank R = 128 and alpha o = 256
while performing LORA fine-tuning on LLaVA-7B [43] for
4 epochs. We keep the rest of the parameters as is, following
LLaVA’s training schedule. The model prompt to generate
descriptions is “You are the planner of an autonomous ve-
hicle, ONLY describe the workzone in the scene identifying
and describing the spatial relationship of relevant objects to
plan and navigate a route”. While training with additional
object context, we use ground truth to append a program-
matic prompt for each object — “(object_category:
confidence)at [ (x1, y1), (x2, y2)]”. While
testing with additional object context, we use detector pre-
dictions.
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Figure 7. Pathway Prediction for Work Zone Image Sequences. We show examples of trajectory heatmaps predicted by YNet [46]
for video sequences. Input to the model is the image and observed pathway, also shown is the future pathway (computed from actual
driving). Frames are outlined indicating plausible pathway heatmap and colliding pathway heatmap. (Sequence 1) Following vehicles
is a learned cue. (Sequence 2) Exploiting available free space is also learned. (Sequence 3) Even if the initial goal is plausible, model
predicts an unsafe trajectory that would collide with work zone objects. Later, model course-corrects the trajectory when closer to work
zone objects.

Figure 8. Pathway Prediction in Work Zone Images. We show examples of goal and trajectory heatmaps predicted by YNet [46]. Input
to the model is the image and observed pathway, also shown is the future pathway (both computed from actual driving videos). Top
row shows the predicted goal heatmaps while the bottom row shows the predicted pathway heatmaps, conditioned on a sampled goal.
We observe that the predicted goal heatmap (marked with an orange box for clarity) is close to the ground truth goal, and the predicted
pathway is plausible.
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Figure 9. Pathway Prediction in Work Zone Images: Failure cases. We show examples of goal and trajectory heatmaps predicted
by YNet [46] where the model fails. Input to the model is the image and observed pathway, also shown is the future pathway (both
computed from actual driving). Top row shows the predicted goal heatmaps (marked with an orange box for clarity) while the bottom
row shows the predicted pathway heatmaps, conditioned on a sampled goal. We observe, (a-b) the model selects vehicles in front as
goal without considering global semantics. (c) Modelling multimodality of goals is a challenge, model is unable to predict all goals at an
intersection. (d) Even if the goal is valid, the pathway prediction fails for heavily blocked work zones.



Table 12. Description and Examples of Roadwork Objects in ROADWork Dataset.

Object Name

Description

Examples

Cone

Vertical Panel

Tubular Marker

Work Vehicle

TTC Sign

Drum

A cone shaped marker. Usually orange in color,
but may be yellow, lime green, blue, red, pink or
white. One or more white or retro-reflective col-
lars around the top. May have four flat sides in-
stead of a cone shape.

Rectangular shaped marker. Orange or white
with alternating orange and white retro-reflective
stripes sloping at an angle. May have text over
downward sloping stripes or text and graphics in-
stead of downward sloping stripes. May have light
on top.

Long and round tube shaped markers. Predomi-
nately orange in color. Typically white or green
when used for protected bike lanes. Top may have
white or retro-reflective bands on top. Top may
become flattened or a loop.

Heavy duty and light duty vehicles that are driven
and operated in order to perform roadwork related
functions. Also includes traffic control vehicles
and passengers vehicles that may be modified for
use on the road and in work zones.

Placed temporarily in and around work zones to
increase motorist and pedestrian awareness and
provide information about work zones. Usually
orange, but can also be white or yellow.

Bright orange cylindrical object with horizontal
retro-reflective orange and white stripes around
the circumference. May have a warning light or
a temporary traffic control sign mounted on top.

SIDEWALK CLOSED

Table continued on following page.




Table 12. Description and Examples of Roadwork Objects in ROADWork Dataset, Continued.

Object Name

Description

Barricade

Barrier

Worker

Fence

Work Equipment

Marker often used to indicate road or sidewalk
closer or used as a channeling device. Consists
of one to three horizontal boards with alternating
orange and white retro-reflective stripes sloping at
an angle. Single board barricades, commonly re-
ferred to as saw horse or roadblock horse, are of-
ten painted in a single color when used by local
municipalities and police departments. May have
a mounted warning light and/or temporary traffic
control sign.

Longitudinal channeling device used as a tem-
porary traffic control device for merging traffic,
closing roads, and to provide guidance and warn-
ing. Also used to protect workers in a work zone.
Made of concrete, plastic, or metal. May be solid
(e.g., concrete barriers on highway median) or
have open vertical space.

People that performing duties related to their job
in the road environment. Workers may be within a
confined roadwork zone or in the area outside of a
work zone. Workers may be operating or inside of
a vehicle. Usually identifiable by a high visibility
vest and hard hat.

Temporary structure used around a work zone.
Usually a temporary chain link fence or safety
fence (usually orange). Chain link fence may have
privacy screen and mounted on top of a barrier.
Broadly encapsulates equipment (not including
work vehicles) commonly found in roadwork
zones. Includes manual and power equipment
whether. May be actively in use by worker.

Examples
L A ROAD [
|cLoSED |,

TLye

Table continued on following page.




Table 12. Description and Examples of Roadwork Objects in ROADWork Dataset, Continued.

Object Name

Description

Examples

Arrow Board

TTC Message Board

Police Vehicle

Police Officer

Digital sign with a matrix of elements capable
of displaying static, sequential, or flashing arrows
used for providing warning and directional infor-
mation to assist with merging and directing road
users through or around roadwork zone. Usually
on a dedicated trailer or may be mounted on a ve-
hicle.

Digital sign with the flexibility of displaying
static, sequential, or flashing messages and sym-
bols. Primarily used to advise road users of un-
expected situations, displaying real-time informa-
tion, and providing information to assist in deci-
sion making. Usually on a dedicated trailer or may
be mounted on a vehicle.

A vehicle used by police and law enforcement to
respond to service calls. Usually a sedan, sports
utility vehicle, or pick-up truck fitted with a light
bar. Paint color and markings vary between states
and municipalities.

Uniformed officers are often in the area of work
zones to help manage traffic around work sites.
May be wearing high visibility vest or safety sash
belt.




Table 13. Number of annotated object instances for each city in the dataset. The categories are ordered by their totals in all the cities.

Other

TTC

Bike Police Police Arrow Work
Lane Roa(%work Officer  Vehicle Message Board Equipment Fence  Worker  Total
Objects Board
Boston, MA 16 27 27 21 18 15 108 268 263 763
Charlotte, NC 0 0 9 12 10 11 29 113 210 394
Chicago, IL 0 0 3 3 12 26 16 22 106 188
Columbus, OH 0 0 3 6 5 15 19 77 79 204
Denver, CO 40 13 5 3 9 105 29 223 157 584
Detroit, MI 0 0 1 2 9 95 38 381 113 639
Houston, TX 0 0 0 3 11 23 12 38 63 150
Indianapolis, IN 0 0 0 6 7 16 37 64 57 187
Jacksonville, FL 0 0 0 1 0 3 6 10 36 56
Los Angeles, CA 0 0 6 8 19 96 26 203 433 791
Minneapolis, MN 0 0 2 2 2 0 20 69 38 133
New York City, NY 0 0 7 3 1 6 116 59 126 318
Philadelphia, PA 0 0 3 12 4 12 38 117 155 341
Phoenix, AZ 0 0 1 0 0 6 10 39 57 113
Pittsburgh, PA 40 49 22 22 83 220 308 707 930 2381
San Antonio, TX 2 3 42 24 7 10 7 174 350 619
San Francisco, CA 0 0 3 2 6 39 23 79 251 403
Washington, DC 0 0 6 20 34 58 72 136 178 504
Total 98 106 143 150 266 831 973 3171 4060 9798
. . . Work  Tubular Vertical

Barrier Barricade Drum TTC Sign Vehicle Marker  Panel Cone Total

Boston, MA 568 169 594 225 845 3591 13 1565 7570
Charlotte, NC 98 117 448 155 334 714 0 757 2623
Chicago, IL 35 178 194 44 172 40 0 386 1049
Columbus, OH 65 106 430 193 131 256 68 314 1563
Denver, CO 149 186 183 429 355 487 1004 1663 4456
Detroit, MI 317 227 1042 206 564 304 1 231 2892
Houston, TX 78 95 598 169 126 57 19 111 1253
Indianapolis, IN 58 19 194 52 120 43 1 344 831
Jacksonville, FLL 10 29 15 31 57 3 0 175 320
Los Angeles, CA 237 768 23 703 864 128 11 584 3318
Minneapolis, MN 118 214 364 248 108 409 1 195 1657
New York City, NY 119 60 115 71 190 49 10 448 1062
Philadelphia, PA 184 136 396 187 299 21 0 695 1918
Phoenix, AZ 48 75 0 95 58 3 245 81 605
Pittsburgh, PA 1214 1857 471 4071 2265 1328 6906 6332 24444
San Antonio, TX 77 224 915 485 400 491 218 1202 4012
San Francisco, CA 171 133 2 124 419 211 0 1326 2386
Washington, DC 250 24 606 214 248 49 4 1432 2827
Total 4137 5167 6632 8242 8258 8859 10725 20261 72281
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