
Splat-LOAM: Gaussian Splatting LiDAR Odometry and Mapping

Supplementary Material

In this supplementary material, we provide additional de-

tails on various components and design choices that were

not fully elaborated in the main paper. These include the

computation of the camera matrix, the rationale behind the

bounding box computation, the incorporation of color fea-

tures, the analytical derivation of our spherical rasterizer

and extended tables on experimental analysis.

A. Camera Matrix

Using hard-coded field of views from the sensor’s datasheet

may lead to empty areas inside the image (i.e., when parts

of the FoV contain no observable environment or, due to

rounding errors). To solve these issues, we recompute the

field of views, along with a camera matrix, for each input

LiDAR point cloud.

Let {pq}
N
q=1 be a set of points expressed at the sensor

origin. Let {vq = (γ, θ, 1)
T

= ψ(pq)}
N
q=1 be the same

set of points expressed in spherical coordinates. From this

representation, we can directly estimate the camera matrix

K as follows. First, we compute the maximum horizontal

and vertical angular values within the set:

γm = min
γ
{vq} γM = max

γ
{vq} , (23)

θm = min
θ
{vq} θM = max

θ
{vq} . (24)

Moreover, we compute the horizontal FoVh = γM − γm
and vertical FoVh = θM − θm field of views and, provided

an image size (H,W ), we estimate the camera matrix as:

K ({pq}) =









−W−1
FoVh

0 W
2

(

1 + γM+γm

FoVh

)

0 −H−1
FoVv

H
2

(

1 + θM+θm
FoVv

)

0 0 1









(25)

B. Bounding Box

In this section, we report a supplementary study concern-

ing the computation of the tightly aligned bounding box on

spherical images. Efficiently computing the tightly aligned

bounding box for a splat on the view space requires solving

a 4-th-order polynomial due to the complexity of the under-

lying manifold. While fixing the azimuth angle γ results in

a planar surface in R
3, fixing the altitude angle θ leads to a

cone subspace in R
3. To find the tightly aligned bounding

box, we should search the spherical coordinates (γ, θ) that

exactly intersect tangentially the splat space at a distance

3σ from the origin. Projecting the α-plane onto the splat

frame results in a line, and the intersection condition can

be solved via a linear equation. Projecting the γ-cone onto

the splat’s frame results in a parametric 2D conic equation.

Enforcing two tangent solutions leads to a polynomial of

4th-degree. Given the small image sizes of LiDAR images

and the relatively high cost of solving higher-order polyno-

mials, we opt for an easier but less optimal solution. We

relax the tight constraint and obtain an image-space bound-

ing box by projecting the individual bounding box vertices.

This typically results in a bounding box that includes more

pixels but is faster in computation.

C. On color features

Modern LiDARs provide a multitude of information on the

beam returns. Specifically, they provide details concerning

the mean IR light level (ambient) and the returned inten-

sity (intensity). Through this information, it is also possible

to compute the reflectivity of the surface using the inverse

square law for Lambertian objects in far fields. Throughout

this study, we opted to omit the color information to fo-

cus on the geometric reconstruction capabilities of our ap-

proach. Moreover, we think incorporating intensity and re-

flectivity channels can pose a challenge due to the inherent

nature of LiDARs. Both properties cannot be explicitly re-

lated to a portion of the space but rather from a combination

of the surface and sensor position with respect to the former.

D. Rasterizer Details

In this section, we describe the process of rasterization over

spherical images. First, we provide a detailed analysis of the

rasterization process for a Gaussian primitive. Furthermore,

we provide the analytical derivatives for the components of

the process. Recall that a Gaussian primitive G is defined

by its centroid µ ∈ R
3, its covariance matrix decomposed

as a rotation matrix R ∈ SO(3) and a scaling matrix S,

and its opacity o ∈ R. To obtain the homogeneous trans-

form that maps points (α, β) from the splat-space to the

sensor-space c, we decouple the axes of the rotation ma-

trix R = (tα, tβ , tn) and the per-axis scaling parameters

s = (sα, sβ), and assume Tc
w ∈ SE(3) be the transform the

world in camera frame. By concatenating Tc
w with Eq. (3),

we obtain the following transform:

T4×3 = Tc
wH =

(

bα bβ bc

0 0 1

)

, (26)

where bc = Rc
wµ + tcw. We omit the third column of T,

which is zeroed by construction.



D.1. Forward Process

In this section, we describe the rasterization process for a

pixel u = (u, v). We assume that primitives are already pre-

sorted. As described in Sec. 3.2.2, we compute the orthog-

onal planes in splat-space by pre-multiplying each plane by

T:

hα = TThx hβ = TThy, (27)

and compute the intersection point p̂:

p̂ = hα × hβ (28)

ŝ = (ŝα, ŝβ) =

(

p̂x

p̂z
,
p̂y

p̂z

)T

. (29)

We use ŝ to estimate two quantities. First, we measure the

Gaussian kernel at the intersection point G (ŝ) to compute

the Gaussian density

α = oG (ŝ) , (30)

and second, we compute the range as

ν = ŝαbα + sβbβ + bc (31)

d = ∥ν∥. (32)

We follow Eq. (5), Eq. (6), and Eq. (7) to α-blend the sorted

Gaussians and compute the pixel contributions.

D.2. Gradient Computation

From the rasterizer perspective, we assume to already have

the per-pixel channel derivatives, namely the depth ∂L
∂d ∈

R and normal ∂L
∂n ∈ R

3. To improve the readability,

each partial derivative also includes its dimension using the
∂A
∂B |dim(A)×dim(B) notation. Finally, we show the computa-

tion for the k-th Gaussian over the m Gaussians contribut-

ing to the pixel.

First, we derive the gradients w.r.t the density:

∂d

∂dk

∣

∣

∣

∣

∣

1×1

= dkAk −
Bd,k

1− αk
(33)

∂n

∂nk

∣

∣

∣

∣

∣

1×3

= nkAk −
Bn,k

1− αk
(34)

∂L

∂αk

∣

∣

∣

∣

∣

1×1

=
∂Ld

∂d

∂d

∂αk
+
∂Ln

∂n

∂n

∂nk
, (35)

where Ak =
∏k−1

i=1 (1 − αi), Bd,k =
∑

i>k diαiAi, and

Bn,k =
∑

i>k niαiAi. We leverage the sorting of the prim-

itives to efficiently compute these values during the back-

propagation of the gradients.

Furthermore, we propagate the gradients to the homoge-

neous transform matrix T from the intersection of planes

p̂k:

∂L

∂ŝk

∣

∣

∣

∣

∣

1×2

=
∂L

∂α

∂α

∂ŝk
+
∂L

∂dk

∂dk
∂ŝk

= −
∂L

∂α
αkŝ

T
k +

∂L

∂dk

αkAk

dk

(

ν
Tbα

ν
Tbβ

)T
(36)

∂L

∂p̂k

∣

∣

∣

∣

∣

1×3

=
∂L

∂ŝk

∂ŝk
∂p̂k

=
1

p̂z





∂L/∂ŝα
∂L/∂ŝβ

−
p̂x∂L/∂ŝα+p̂y∂L/∂ŝβ

p̂z





T

.

(37)

Thus, we can derive the gradients over the matrix T. We

keep the three accumulators ∂L
∂bα

, ∂L
∂bβ

, and ∂L
∂bc

decoupled

to correctly integrate the contributions from each pixel:

ρα =

(

∂L

∂pk
× hα

)

ρβ =

(

∂L

∂pk
× hβ

)

(38)

∂L

∂bα

∣

∣

∣

∣

∣

1×3

=
∂L

∂p̂k

∂p̂k

∂bα
+
∂L

∂dk

∂dk
∂bα

= −ρβ,1hx + ρα,1hy +
L

∂dk

ŝα
dk

ν
T

(39)

∂L

∂bβ

∣

∣

∣

∣

∣

1×3

=
∂L

∂p̂k

∂p̂k

∂bβ
+
∂L

∂dk

∂dk
∂bβ

= −ρβ,2hx + ρα,2hy +
L

∂dk

ŝβ
dk

ν
T

(40)

∂L

∂bc

∣

∣

∣

∣

∣

1×3

=
∂L

∂p̂k

∂p̂k

∂bc
+
∂L

∂dk

∂dk
∂bc

= −ρβ,3hx + ρα,3hy +
L

∂dk

1

dk
ν
T ,

(41)

where ρk,i is the i-th element of ρk.

Finally, we compute the gradients w.r.t. the Gaussian pa-

rameters.

∂L

∂Rk

∣

∣

∣

∣

∣

3×3

=
(

sα
∂L
∂bα

T
sβ

∂L
∂bβ

T ∂L
∂nk

T
)

Rc
w (42)

∂L

∂Sk

∣

∣

∣

∣

∣

1×2

=
(

∂L
∂bα

Rc
wR[1]

∂L
∂bα

Rc
wR[1]

)

(43)

∂L

∂µk

∣

∣

∣

∣

∣

1×3

=
∂L

∂bc
Rc

w, (44)

∂L

∂ok

∣

∣

∣

∣

∣

1×1

=
∂L

∂αk
exp

(

−
1

2
sTk sk

)

(45)

where R[i] is the i-th column of R.



Figure D.1. Qualitative Mapping Results. The images show the mapping results for different pipelines in the quad-easy sequence. We

also include the SLAMesh pipeline, which was evaluated on a self-estimated trajectory.

E. Additional Experiment Results

This section contains additional results that we did not in-

clude in the main paper due to lack of space. Specifically,

Tab. B contains the RPE results that were used to generate

Fig. 4. Moreover, the additional mapping evaluation met-

rics, namely Accuracy and Completeness for each dataset

are reported. Specifically, the results of Newer College [50]

are reported in Tab. E.2, the results of Oxford Spires [41]

are reported in Tab. E.3 and the ones of Mai City [43] are

reported in Tab. E.4.

Method quad math keble bodl observ pincio spagna campus mai-1 mai-2 avg [%]

point2plane 0.0605 0.0103 0.1715 0.2110 0.1747 0.0074 0.0078 0.0083 fail fail 8.14

SLAMesh 0.0043 0.0039 0.0060 0.0045 0.0043 fail fail fail 0.003 0.0028 0.41

LOAM 0.0035 0.0028 0.0047 0.0034 0.0055 0.0053 0.0022 0.0016 0.0045 0.0049 0.38

MAD-ICP 0.0036 0.0037 0.0036 0.0036 0.0035 0.0024 0.0008 0.0007 0.0032 0.004 0.29

PIN-SLAM 0.0041 0.0019 0.0038 0.0025 0.0028 0.0018 0.0013 0.0056 0.0026 0.0032 0.30

Ours 0.0057 0.0038 0.0078 0.0087 0.0052 0.0027 0.0033 0.0075 0.0069 0.0071 0.59

Table B. Tracking RPE evaluation (%). Averages in red are com-

puted without failed sequences.

quad-easy math-easy

Method Acc ↓ Com ↓ Acc ↓ Com ↓

OpenVDB 11.45 4.38 11.69 10.55

VoxBlox 20.36 12.64 11.82 12.04

N
3-Mapping 6.32 9.75 fail fail

PIN-SLAM 15.28 10.5 16.68 12.69

Ours 6.64 4.09 8.26 10.05

Table E.2. Mapping results on the Newer College Dataset. The

table reports Accuracy and Completeness for each sequence.

keble-02 bodleian-02 observatory-01

Method Acc ↓ Com ↓ Acc ↓ Com ↓ Acc ↓ Com ↓

OpenVDB 7.46 6.92 10.34 4.68 9.58 9.60

VoxBlox 15.81 14.25 18.92 11.56 15.09 15.15

N
3-Mapping 6.21 7.82 10.16 5.62 8.27 10.44

PIN-SLAM 13.73 9.94 14.34 7.14 16.91 12.07

Ours 6.18 8.69 10.87 4.33 9.35 11.76

Table E.3. Mapping results on the Oxford Spires Dataset. The

table reports Accuracy and Completeness for each sequence.

mai-01 mai-02

Method Acc ↓ Com ↓ Acc ↓ Com ↓

OpenVDB 3.04 3.63 3.01 3.51

VoxBlox 11.37 2.71 7.14 4.46

N
3-Mapping 2.62 2.66 2.75 2.76

PIN-SLAM 7.14 2.68 6.94 2.69

Ours 2.72 4.57 4.15 5.95

Table E.4. Mapping results on the Mai City Dataset. The table

reports Accuracy and Completeness for each sequence.

F. Motion Distortion

Throughout the experiments, we noticed that Splat-LOAM

is very sensitive to the motion distortion effect caused by

the continual acquisition of LiDARs. Figure F.1 shows how

the projective error over the estimated model changes while

the sensor rotates during the acquisition, hindering both the

registration and mapping phases. We plan to compensate

for the motion distortion effect by simultaneously estimat-

ing the sensor pose and velocity.



Figure F.1. Effects of motion distortion during registration.

The images show the projective range error between our model

and the incoming measurement (a) before a rotation, (b) during a

rotation, and (c) after the rotation. The images are resized over the

horizontal axis for visibility purposes. The error is expressed in

meters.

G. Additional Qualitative Comparison

In this section, we show additional results over the meshing

reconstruction. Figure D.1 includes the results we obtained

using the work of Ruan et al. [32]. We remark that we did

not include these results in the manuscript as we could not

run the official implementation over the Ground Truth tra-

jectory. Additionally, Figure G.1 shows the reconstruction

results over the Oxford Spires dataset [41].



Figure G.1. Qualitative Mapping Results. The images show the mapping results for different pipelines in the Oxford Spires dataset [41].


	On color features
	Rasterizer Details
	Motion Distortion
	Additional Qualitative Comparison



