SAGI: Semantically Aligned and Uncertainty Guided AI Image Inpainting

Supplementary Material

1. Implementation details

This section provides additional implementation details of
our approach to ensure reproducibility. Code is available on
https://github.com/mever-team/SAGI.

1.1. Source of Authentic Images

Since RAISE [5] contains RAW images, we processed these
images before using them for inpainting experiments. We
utilized the RAISE dataset as described in [8].

1.2. Dataset Splits

As shown in Table 1, we structure our dataset to evalu-
ate both in-domain performance and generalization to new
data. For in-domain evaluation, we use COCO (60,000 ran-
domly selected training images and nearly all 5,000 valida-
tion images for validation and testing) and RAISE (7,735
images processed with @, yielding 25,674 image-mask-
model combinations through 1-7 masks or prompts per im-
age, with derived images kept in the same split, as each im-
age was inpainted up to 4 times only in this dataset). To
test generalization, we create an out-of-domain testing split
using Openlmages [3]—a dataset not used during train-
ing—comprising 6,000 randomly selected test images. This
split uses a different language model Oy, (Claude) than
COCO and RAISE (ChatGPT), providing a way to evalu-
ate how well models perform on both new data and different
prompting approaches. Throughout our experiments, we re-
fer to the COCO and RAISE test splits as in-domain and the
Openlmages test split as out-of-domain.

Training Validation Testing
59,708 1,950 2,922

COCo ] (75%) (31%) (29%)
19,741 4,262 1,671

RAISE [5] (25%) (69%) (16%)
Openlmages [3] N/A N/A 5,585
(55%)

Inpainted 79,449 6,212 10,178
Authentic 79,449 6,212 9,071

Table 1. Overview of dataset splits across COCO, RAISE, and
Openlmages. The table shows the number of images in each split.
The total number of images, including authentic and inpainted ver-
sions, is provided. Percentages represent the distribution of each
dataset within the total split for inpainted images.

1.3. SAOR configuration

The specific API endpoints used in our implementation
were gpt-3.5-turbo [12] (as of June 2024) and claude-3-
5-sonnet-20240620 [2]. The system prompt used for the
LLMs in SAOR was configured as shown in Fig. 1. For
double inpainting cases, where two objects needed to be se-
quentially modified, we used an adapted system prompt to
select a second object and generate a prompt as shown in
Fig. 1. For images designated for object removal, we used a
simplified system prompt focused solely on object selection
that is shown in Fig. 1.

All LLM interactions were configured with hyperparam-
eters including a temperature of 1.2 to encourage creative
variations in the generated prompts, a top-p (nucleus sam-
pling threshold) of 0.8, and a maximum token limit of 40
for prompt length. Some prompts from initial experiments,
conducted without the maximum token restriction, were re-
tained in our final dataset. The prefix “Inpaint the masked
area with...” was included in the system prompts to maintain
a consistent format in the LLMs’ responses but was omitted
from the actual saved prompts to avoid potential misinter-
pretation by diffusion models.

1.4. Inpainting Pipelines Configuration

The text-guided inpainting models support Stable Diffu-
sion [15] by default, along with certain community ver-
sions. Specifically, HD-Painter [11] supports Stable Dif-
fusion v1.5', Stable Diffusion v2°, and DreamShaper v8°.
BrushNet [7] supports Stable Diffusion v1.5, Stable Diffu-
sion XL*, DreamShaper v8, Realistic Vision’, epiCReal-
ism®, and JuggernautXL’. PowerPaint [20] combines Re-
alistic Vision and BrushNet, while ControlNetInpaint [18]
supports Stable Diffusion v1.5. Inpaint-Anything [17] sup-
ports Stable Diffusion v2.

Each inpainting pipeline received an equal number
of images for processing, with Remove-Anything being
treated as a separate pipeline, and the settings for each
pipeline, such as diffusion models and post-processing tech-

lhtips://htqqianace.co/stablefuiffusionfvlfb/
stable-diffusion-v1-5
2h2tp5 : / /huggingface . co/ stabilityai / stable -

diffusion-2
3h::ps://civitai.som/mouois/4384/drcaﬁshapcr
4h::ps : / /huggingface . co/ stabilityai / stable -
diffusion-xl-base-1.0
Shttps : //civitai . com/models /4201 /realistic -
vision-v60-bl
Shttps://civitai.com/models/25694/epicrealism
/

Thttps://civitai.com/models/133005/ juggernaut -

x1



LLM System Prompt (1st Inpainting)

You write prompts for text-to-image image inpainting models (Al-inpainting). In these models, you give an image, a mask
of an area that will be inpainted, and a text prompt to tell the model what to inpaint the masked area with. You will be given
a caption of the original image (the whole image) to understand the context and a list of objects. Then you choose an object,
THAT EXISTS IN THE LIST GIVEN TO YOU. You need to generate a suitable prompt to alter the masked area of the
image that covers the object you chose.

Remember to make a prompt that alters the image. If you decide to replace the said object, replace it with something that
makes sense given the object that is to be replaced and the caption. Also, do not mention the original object in the prompt
unless you want to replace the said object with one of the same class. Generate the prompt like this:

Object: {object on the original list}

Prompt: Inpaint the masked area with...

LLM System Prompt (2nd Inpainting)

You write prompts for text-to-image image inpainting models (Al-inpainting). In these models, you give an image, a mask of
an area that will be inpainted, and a text prompt to tell the model what to inpaint the masked area with. An object has already
been replaced in the image, and we need to generate a DIFFERENT prompt for a second object.

You will be given a caption of the image to understand the context, the class of the 1st object, and the prompt of the 1st object.
You will then SELECT A 2ND OBJECT from the image that is to be inpainted. You need to generate a suitable prompt to
alter the masked area of the image that covers the 2nd object.

Remember to make a prompt that alters the image. If you decide to replace the said object, replace it with something that
makes sense given the object that is to be replaced and the caption. Also, do not mention the original object in the prompt
unless you want to replace the said object with one of the same class. Generate the prompt like this:

Object: {name of the 2nd object}

Prompt: Inpaint the masked area with...

LLM System Prompt (Removal)

You will be given a list of objects that exist in an image. You must choose an object to be removed with inpainting methods.
Choose an object that makes sense.

Answer like this:

Object: {object in the list}

Figure 1. System Prompts for selecting objects and generating prompts for inpainting and removal. The first prompt is for the 1st inpainting,
the second for the 2nd inpainting, and the third for object removal.

niques, were distributed uniformly. Despite efforts to main-
tain uniformity, small discrepancies occurred due to con-
straints such as excluding NSFW images flagged by Stable
Diffusion.

1.5. UGDA Configuration

The Uncertainty-Guided Deceptiveness Assessment
(UGDA) was implemented using the chatgpt-4o-latest
[13] API endpoint (as of October 2024). We conducted
preliminary experiments with various prompt formulations
and found that allowing the model to explain its reasoning
before providing a verdict led to more reliable assessments.
The final implementation uses a two-stage process with
carefully engineered prompts. The initial realism check
uses the system prompt shown in Fig. 2. For images passing
the initial check, a comparative assessment is performed
using the system prompt shown in Fig. 2.

The prompt design choices were made based on empir-
ical observations from a small validation set. Through our
experiments, we found that requiring explanations before

verdicts significantly improved assessment quality. Addi-
tionally, explicit mention of common artifacts (e.g., unusual
textures, biological anomalies) helped focus the model’s at-
tention on relevant features.

The VLM was configured with conservative hyperpa-
rameters to ensure consistent responses, using a tempera-
ture of 0.1 to minimize response variability, a top-p of 1.0
with no nucleus sampling, and a maximum token limit of
2048 to allow for detailed explanations.

1.6. Detailed Classification Process of UGDA

Here we present the classification process of the second
stage of UGDA in more detail:

e Case 1: The VLM identifies I; in one order and fi in the
other, indicating order-dependent bias

* Case 2: The VLM consistently identifies I; as more real-
istic (81 = S9 = fz)

* Case 3: The VLM responds with “both” in one case and
chooses I ; in the other

* Case 4: The VLM consistently responds that both images



VLM System Prompt (First Realism Check)

You are an expert in analyzing images for signs of modification by Al models and assessing their realism. Your task is to
examine an image and determine if it is realistic. In addition, provide a brief explanation highlighting the key elements that
informed your judgment, such as unusual textures, unnatural elements, unusual biological phenomena (animals with multiple
limbs, heads), unusual arrangement of objects (weirdly clustered objects), or any visible artifacts.

# Output Format

Assessment: (your explanation goes here)

Verdict: (final verdict, answer “Yes, it is realistic”” or “No, it is not realistic’)

VLM System Prompt (Second Realism Check)

You are an expert in analyzing images for signs of modification by Al models and assessing their realism. Your task is to
examine two images and determine which one is more realistic. In addition, provide a brief explanation highlighting the key
elements that informed your judgment, such as unusual textures, unnatural elements, unusual biological phenomena (animals

# Output Format
Assessment: (your explanation goes here)

with multiple limbs, heads), unusual arrangement of objects (weirdly clustered objects), or any visible artifacts.

Verdict: (final verdict, answer “First is more realistic” or “Second is more realistic”” or “Both look realistic’)

Figure 2. VLM system prompts for realism checks. The first prompt is for assessing the realism of a single image, and the second prompt

is for comparing the realism of two images, original and inpainted.

are equally realistic (s; = s2 = both)

In all other response combinations, fi is classified as
non-deceiving. This classification scheme captures cases
where the VLM either consistently prefers the inpainted im-
age or shows uncertainty in its assessment, all of which indi-
cate potential deceptiveness in the synthetic content. Case 1
indicates model uncertainty manifested through order sensi-
tivity, Case 2 represents clear preference for synthetic con-
tent, Case 3 captures uncertainty biased toward synthetic
content, and Case 4 reflects complete inability to distinguish
between real and synthetic content. These patterns suggest
varying degrees of image deceptiveness that warrant classi-
fication as deceiving.

1.7. Human Benchmark

The application implementing the human benchmark was
developed using Gradio [1]. At the start of the demo, par-
ticipants were provided with clear instructions on how to
proceed. They were asked to evaluate whether an image
had been inpainted and to draw bounding boxes around the
areas they believed to be inpainted. Additionally, partici-
pants were asked to complete a short demographics ques-
tionnaire before beginning the task. The questions included
are shown in Tab. 2.

2. Unmasked Area Preservation

Fidelity metrics such as Mean Squared Error (MSE),
Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio
(PSNR), and Learned Perceptual Image Patch Similarity
(LPIPS) [19] assess the preservation of the non-inpainted
area. Fidelity metrics are most meaningful for FR images,
whereas for SP images, where the compared areas are

nearly identical, they provide limited insight. The results
are presented in Tab. 3. When comparing our dataset with
existing alternatives, our SAGI-D significantly outperforms
TGIF across all FR image fidelity metrics. We achieve
a PSNR of 25.79 compared to TGIF’s 14.41, with sub-
stantially better LPIPS (44.24 vs 289.55), MSE (5.08 vs
60.43), and MAE (41.16 vs 173.97). These improvements
indicate that our inpainting approach better preserves the
original image context while implementing the intended
modifications. CocoGlide is not included in Tab. 3 since it
contains only SP images.

3. Localization and Detection Results

In this section, we present extended results on localization
and detection, studying various cases for forensic models
PSCC-Net [10], CAT-Net [8], TruFor [6], and MMFusion
(MMFus) [16].

Since mean IoU and detection Accuracy require a thresh-
old, we also report AUC metrics in Table 5 as they are
threshold-agnostic. We calculate AUC at both pixel level
(localization) and image level (detection). For localiza-
tion AUC, we resize and flatten all localization maps and
their ground truths into two vectors for ROC computation
in each group. Note that detection AUC cannot be calcu-
lated for SP and FR sets, as they contain only forged images.
The AUC metrics further confirm that retraining improves
performance significantly. TruFor’s localization AUC in-
creases from 68.9% to 99.5% for in-domain and 79.9% to
99.6% for out-of-domain testing. Similarly, CAT-Net shows
strong in-domain gains (60.0% to 95.6%) but smaller out-
of-domain improvement (51.7% to 90.8%). Domain gen-
eralization varies across models. While retrained CAT-Net



U Prefer not to say

Gender Age Range Highest Education Completed
0 Male O Under 18 0 EQF 1-4 (Primary/Upper Secondary)
[0 Female [118-24 0 EQF 5 (Post-Secondary Diploma)
[J Other [125-34 [J EQF 6 (Bachelor’s Degree)
O Prefer not to say 0 35-44 O EQF 7 (Master’s Degree)
[045-54 [0 EQF 8 (Doctorate)
[]55-64 [J Prefer not to say
065+

Current Education Status

Familiarity with AI-Generated Images

Knowledge of Digital Photography

0 EQF 1-4 (Primary/Upper Secondary)
O EQF 5 (Post-Secondary Diploma)

0 EQF 6 (Bachelor’s Degree)

O EQF 7 (Master’s Degree)

[0 EQF 8 (Doctorate)

O Very familiar

O Somewhat familiar
0 Slightly familiar
0 Not familiar

O Prefer not to say

[0 Professional level
[ Advanced

[ Intermediate

[J Basic

[J No experience

[ Not currently studying
[ Prefer not to say

[ Prefer not to say

Table 2. Demographic and background questionnaire.

Dataset PSNRT LPIPS, MSE| MAE| SSIM?T
TGIF 14.4 289.6 60.4 174.0 0.53
Ours 25.8 44.2 51 41.2 0.81

Table 3. Comparison based on fidelity metrics for FR images.
Top: object labels vs. Caption prompts vs LLM prompts. Bot-
tom: our dataset vs. TGIF. LPIPS, MSE, and MAE values are
x103. CocoGlide is omitted as it contains only SP images.

achieves high in-domain detection AUC (99.6%), it drops to
76% for out-of-domain. In contrast, retrained TruFor main-
tains consistent performance across domains in both local-
ization (99.5%/99.6%) and detection (99.2%/98.0%). SP
localization remains easier for both original and retrained
models than FR, with all retrained models achieving lo-
calization AUCs above 90.0% for SP tasks. For FR im-
ages, original models perform poorly (AUCs 52.7%-74.1%)
but show clear improvements after retraining, with TruFor
reaching 98.6% AUC.

Tables 6 demonstrate model performance across inpaint-
ing methods. The SP/FR performance gap persists across
methods - e.g., TruFor{ achieves 89.9 IoU on BrushNet-
SP versus 77.6 on BrushNet-FR, with similar patterns for
PowerPaint (90.9 SP, 78.1 FR). HDPainter presents the
most challenging case, with TruFor{ achieving only 55.4
IoU compared to 76.6-78.1 for other FR methods. Brush-
Net and PowerPaint FR manipulations are more detectable,
likely due to distinctive inpainting artifacts. This trend
holds across models, with MMFusiont achieving 58.0 IoU
on PowerPaint-FR but only 42.5 on HDPainter-FR. For SP
cases, InpaintAnything is well-detected even by original
models (34.9-63.6 IoU), likely due to its traditional copy-
paste operations. HDPainter remains challenging in SP sce-
narios, showing consistently lower scores. HDPainter’s dif-
ficulty could stem from its greater impact beyond masked

regions in FR cases (Figure 3) and its blending/upscaling
post-processing in SP cases.

Table 4 compares model performance between single
and double inpainting cases. Original models show de-
creased performance on double inpainting, particularly
evident in CAT-Net’s IoU drop from 27.2 to 7.0. This
suggests that multiple manipulations make detection more
challenging for models not specifically trained for such
cases. Interestingly, retrained models show more robust
performance across both scenarios. TruFor{ maintains
similar IoU scores (81.0/79.0) while slightly improving
in accuracy (95.0/99.0). CAT-Netf even shows a small
improvement in IoU for double inpainting (42.4 to 49.0)
while maintaining near-perfect accuracy (99.9/100.0),
suggesting that retraining helps models adapt to more
complex manipulation patterns.

Figure 3. Examples of inpainted images using HDPainter. Left is
the original image and right is the inpainted result. HDPainter’s
inpainting significantly affects regions beyond the masked area,
evident in the faces of the people next to the balloons.

3.1. Analysis of Model Detection Performance

The varying performance across models can be attributed to
their architectural choices and training strategies. TruFor’s



Mean IoU Accuracy
Data Model ;1o Double Single Double
= PSCC-Net 15.8 16.0 376 390
.S CAT-Net 27.2 7.0 66.6  49.0
go MMFusion 34.5 220 479 420

TruFor 3.8  21.0 296 320

PSCC-Net 337 270 443 41.0
+17.9 +11.0 +6.7 +2.0
CAT-Net 424  49.0 999 100.0
+15.2 +42.0 +33.3 +51.0
MMFusion 64.0 59.0 84.1 88.0
+29.5 +37.0 +36.2 +46.0
TruFor 81.0 79.0 950 99.0
+49.2 +58.0 +65.4 +67.0

SAGI-D

Table 4. Performance comparison between original models and
models retrained on SAGI-D . The table shows Mean IoU and Ac-
curacy for both single and double inpainting manipulations. Green
numbers indicate improvements compared to the original models.
Retraining on SAGI-D yields significant performance improve-
ments across all metrics and models, with TruFor showing the
most substantial gains in both localization (Mean IoU) and detec-
tion (Accuracy).

AUC (loc) AUC (det)
id ood SP FR id ood

CAT-Net  60.0 51.7 69.9 58.7 67.2 50.8

Data Model

.%) PSCC-Net 71.6 59.2 64.8 52.7 83.4 5538
‘&z  MMFusion 76.5 76.0 84.9 70.5 70.5 65.6
©  TruFor 68.9 799 81.1 74.1 72.3 65.1
CAT-Net 95.6 90.8 93.3 88.8 99.6 76.7
+35.5 +39.1 +23.4 +30.1 +32.4 +26.0
A PSCC-Net 83.5 84.2 90.0 68.7 80.8 74.2
— +11.8 +25.0 +25.2 +16.1 -2.6 +18.4
% MMFusion 96.8 95.0 98.5 90.9 98.2 89.9
%)

+20.3 +19.0 +13.6 +204 +27.8 +24.3
TruFor 99.5 99.6 99.9 98.6 99.2 98.0
+30.5 +19.7 +18.8 +24.6 +26.9 +33.0

Table 5. Performance comparison of image forensics methods
across different domains. The table shows AUC scores for both
localization and detection tasks, comparing original models with
those retrained on our dataset. “ID” indicates in-domain and
“OO0D” indicates out-of-domain performance, while SP (Splic-
ing) and FR (Fully Regenerated) represent different forgery types.
Green numbers show improvements and red numbers show de-
creases compared to original models. Retraining on our dataset
yields significant performance improvements across most metrics
and models.

superior performance likely stems from its extensively pre-
trained Noiseprint++ component, which was trained using
self-supervised methods on images with diverse processing

procedures. While MMFusion shares architectural similar-
ities with TruFor, its use of multiple modalities may lead
to overfitting, potentially explaining its lower performance
compared to TruFor. On the other hand, PSCC-Net’s poor
localization performance can be attributed to its relatively
small model size, suggesting possible underfitting. CAT-
Net’s performance is particularly affected by our evaluation
setup for two reasons. First, its design leverages JPEG dou-
ble compression artifacts for detection, but our dataset con-
tains PNG images where quantization tables are not pre-
served. Second, while JPEG compression was intrinsic
to CAT-Net’s original training data, it lacks explicit aug-
mentations for compression robustness unlike other mod-
els. This explains its vulnerability to JPEG compression ar-
tifacts compared to models with more robust training strate-
gies.

3.2. Model Compression Robustness Analysis

Quaity
—— TruFort  —— MMFusiont  —— CAT-Nett —— PSCC-Nett
--e-- TruFor --e-- MMFusion --e- CAT-Net --e- PSCC-Net

Figure 4. Robustness of model detection performance under com-
pression. Top row shows model detection performance when sub-
jected to JPEG compression at varying quality levels, while bot-
tom row shows detection performance under WEBP compression.

We evaluate model robustness against JPEG and WEBP
image compression at quality levels 0.85, 0.7, and 0.5. Fig-
ure 4 presents detection and localization results. Retrained
TruFor shows the strongest resilience, maintaining stable
performance across quality levels for both compression
types. WEBP compression affects performance more than
JPEG, particularly for localization tasks. All models show
higher degradation in IoU scores compared to accuracy met-
rics, indicating that manipulation localization is more sen-
sitive to compression artifacts compared with detection.

3.3. Comparison with human performance

In this section, we present extended results of our human
evaluation study, analyzing both the participants’ detection
performance in more cases and the relationship between de-
mographic factors and classification accuracy.



FR SP

Data Model gy CN HDP PPt BN HDP A PPt RA
IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc
= CN 3.0 368 9.0 404 50 344 4.1 48.0 31.6 722 15 583 62.6 98.7 224 67.0 524 96.2
£ PS 122 366 79 359 57 259 127 338 165 403 173 53.8 349 484 106 232 14.6 355
'E:D MM 202 24.1 185 292 109 24.8 17.2 209 67.7 753 26.7 50.2 63.6 88.7 464 57.2 30.5 43.6
© TF 22.5 140 21.7 143 12.1 99 21.3 106 56.7 49.8 23.7 266 60.7 70.1 42.5 357 209 21.0
CN 38.3 99.9 38.9 100.0 28.3 99.9 379 99.7 41.5 100.0 34.3 100.0 48.5 99.8 42.0 100.0 54.0 99.9
+353 +63.1 4299 +59.6 +23.3 +65.5 +33.8 +51.7 +9.9 +27.8 +32.8 +41.7 -141 +1.1 +19.6 +33.0 +1.6 +3.7
A PS 23.8 679 92 152 16.5 155 38.1 64.1 32.3 432 39.7 68.0 53.0 51.7 462 51.4 39.8 439
D) +11.6 +31.3 +1.3 -20.7 +10.8 -104 +254 +30.3 +158 +29 +224 +142 +18.1 +3.3 +356 +282 +252 +84
Sg MM 45.1 63.8 534 89.4 425 82.1 58.0 83.5 80.5 91.7 585 73.0 73.6 85.1 80.7 92.7 72.2 86.3
2 249 +39.7 4349 +60.2 +31.6 +57.3 +40.8 +62.6 +12.8 +16.4 +31.8 +22.8 +10.0 -3.6 +343 +355 +41.7 +42.7
TF 77.6 92.1 76.6 94.6 554 925 78.1 98.3 89.9 96.0 80.6 95.0 84.7 92.5 909 98.7 88.0 96.6
+55.1 +78.1 +54.9 +80.3 +43.3 +82.6 +56.8 +87.7 +33.2 +46.2 +56.9 +68.4 +24.0 +22.4 +48.4 +63.0 +67.1 +75.6

Table 6. Performance comparison of image forensics methods CAT-Net (CN), MMFusion (MM), PSCC-Net (PS), and TruFor (TF) for
both FR (Fully Regenerated) and SP (Splicing) scenarios. For each method, Mean IoU and Accuracy (Acc) scores are shown. Inpainting
Models: BN (BrushNet), CN (ControlNet), HDP (HDPainter), PPt (PowerPaint), IA (InpaintAnything), and RA (RemoveAnything). The
green values in the second row for each retrained model indicate the improvement over the corresponding original model.

Participants included 26 males, 6 females, and 10 undis-
closed. Ages ranged from 18 to 65+, with the largest group
being 18-24 (19), followed by 25-34 (8) and 35-44 (6).
Users were asked to detect inpainting and draw bounding
boxes around suspected manipulated regions. For IoU com-
putation, ground truth masks were converted to bounding
boxes.

Table 7 shows the results of chi-square tests [14] for
independence between demographic variables and classifi-
cation accuracy (i.e., the proportion of correctly identified
images), after filtering out participants with fewer than 20
votes (reducing the sample from 42 to 34 participants). The
chi-square tests indicated that the independence hypothesis
could not be rejected in any case, and the effect sizes (mea-
sured by Cramer’s V [4]) showed negligible to weak as-
sociations, suggesting that these demographic factors have
limited practical significance.

Demographic Factor ~ Cramer’s V. p-value
Gender 0.0661 0.0014
Age 0.0988 0.0003
Education Completed 0.0929 0.0004
Current Education 0.0986 0.0001
Al Familiarity 0.0811 0.0013
DIP Familiarity 0.0978 0.0002

Table 7. Chi-square test results for demographic factors vs verifi-
cation accuracy

Table 8 presents the comparison between human evalu-
ators and automated models. Human performance reached
67.4% accuracy and 15.2 IoU, significantly lower than re-

trained models like TruFor (95.3% accuracy, 68.3%) and
MMFusion (87.9% accuracy, 50.9% IoU). Results are bro-
ken down into four categories: All represents performance
on the complete test set, while Deceiving, Non-Deceiving
and Intermediate correspond to UGDA’s classification of
images based on their potential to fool human perception.
The Intermediate category includes images that passed the
initial realism check but not the second. Users particularly
struggled with deceiving images (35.2% accuracy, 12.9%
IoU) compared to non-deceiving ones (73.7% accuracy,
40.4% IoU), validating UGDA’s effectiveness in identifying
manipulations that are challenging for human perception.
Also, the performance of humans on the intermediate cate-
gory (59.7% accuracy, 28.3% IoU) confirms that the second
stage is indeed effective in discarding images that are not
truly deceiving. In contrast, retrained models maintain high
performance even on these challenging cases, with TruFor
achieving 98.9% accuracy and 87.4% IoU on deceiving im-
ages. The performance gap between humans and models
emphasizes the importance of automated detection meth-
ods, particularly for high-quality inpainting that can bypass
human perception.

In Table 9 we see the performance comparison between
spliced (SP) and fully regenerated (FR) images, across hu-
man evaluators and the forensic models. The results re-
veal that human performance remains consistent across both
manipulation types, showing no significant advantage in
detecting either SP (0.34 for Deceiving, 0.76 for Non-
Deceiving) or FR manipulations (0.37 for Deceiving, 0.74
for Non-Deceiving) in contrast to the forensic models.



Model Accuracy Mean IoU

All Dec. Int. ND. All Dec. Int. ND.
Human  67.4 352 59.7 73.7 152 12.9 28.3 40.4
PSCC 32.1 29.6 37.5 29.2 144 152 14.1 13.8
CAT-Net 62.5 70.4 59.4 57.6 19.5 29.4 142 149
PSCCt  51.3 49.6 50.0 544 36.3 35.2 304 433
TruFor  27.3 35.2 25.0 21.6 29.0 354 24.7 27.0
MMFus 39.9 48.8 34.4 36.4 32.1 38.1 309 27.3
CAT-Nett 100 100 100 100 47.6 45.8 44.5 52.6
MMFust 90.5 89.2 90.6 91.6 69.6 66.5 70.3 72.1
TruFort 99.7 99.2 100 100 87.6 86.9 86.6 89.4

Table 8. Human vs. model performance comparison on inpainting
detection. Results show accuracy and IoU for full test set (All)
and images classified by UGDA as Deceiving (Dec.) or Non-
Deceiving (ND.). 7 indicates models retrained on our dataset.
Bold values indicate the best performance per column.

Accuracy IoU
Model Dec. Non-Dec. Dec. Non-Dec.
SP FR SP FR SP FR SP FR

Human 34.1 37.2 75.8 74.4 12.0 14.0 41.3 419
TruFor 474 11.8 33.7 10.7 43.5 20.2 38.0 20.0
MMFus 61.5 25.0 50.0 23.2 49.3 18.7 42.1 17.5
PSCC-Net 31.4 25.0 31.6 28.6 17.3 11.5 17.2 11.5
PSCC-Nett 51.9 39.5 724 41.1 44.8 16.5 61.1 31.7
CAT-Net  84.6 44.7 77.6 41.1 442 45 304 4.5
MMFust 929 84.2 91.8 92.9 78.0 49.3 82.0 67.8
TruFor 99.4 98.7 100 100 91.7 78.9 95.3 88.0
CAT-Nett 100 100 100 100 48.8 41.0 53.4 53.5

Table 9. Human vs. model performance comparison on inpainting
detection. Results show accuracy and IoU for full test set images
classified by UGDA as Deceiving (Dec.) or Non-Deceiving (Non-
Dec.), SP and FR. f indicates models retrained on our dataset.
Bold values indicate the best performance per column.

3.4. Qualitative Analysis

In Figure 5, we present a comparison of the localization
maps before and after fine-tuning. The results demonstrate
that fine-tuning can significantly improve localization per-
formance. For PSCC-Net, while improvements are ob-
served in the second and fifth rows, poor localization re-
sults persist in other cases. Regarding the remaining mod-
els, localization improvements are evident in all cases, with
TruFor consistently demonstrating the most accurate local-
ization maps. The second row showcases an example where
the original CAT-Net, MMFusion, and TruFor successfully
identified the inpainted area, while the fourth row presents a
case where the original model could only partially detect the
inpainted region. The fifth row presents an interesting case
involving the original MMFusion model. If the predicted

mask were inverted, it would have successfully identified
the inpainted area. This can be attributed to the fact that
in splicing it can be ambiguous which area is spliced and
which is original. In Al inpainting cases, however, there is
no ambiguity about which region has been modified.

4. Example Outputs

Figures 6 and 7 present a qualitative analysis of some cases
from our dataset. In Figure 6, we show successful inpaint-
ing examples across different models and datasets (COCO,
RAISE, and OpenImages), where the models correctly fol-
low the prompts while producing realistic results.

Figure 7 presents different failure modes. The top two
rows reveal problems with LLM-generated prompts, show-
ing cases where prompts either fail to match the scene con-
text or lead to technically sound but unrealistic results. Row
3 demonstrates technical limitations with visible artifacts
and blurs. Row 4 presents cases where the inpainting ap-
pears realistic but deviates from the given prompt. Row 5
shows examples of poor inpainting quality where the mod-
els fail to generate coherent content. Finally, row 6 illus-
trates a subtle failure mode where the inpainting is techni-
cally well-executed but produces results that appear unnatu-
ral to human observers upon closer inspection. While these
cases might be easily identifiable as manipulated by careful
observers, they could potentially deceive viewers who are
not actively looking for signs of manipulation, highlight-
ing the importance of including such examples in inpainting
datasets for developing robust detection methods.

References

[1] Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan, Ab-
dulrahman Alfozan, and James Zou. Gradio: Hassle-free
sharing and testing of ml models in the wild, 2019. 3

[2] Anthropic. Claude 3.5 sonnet, 2024. Large Language Model.
1

[3] Rodrigo Benenson and Vittorio Ferrari. From couloring-in
to pointillism: revisiting semantic segmentation supervision.
In ArXiv, 2022. 1

[4] Harald Cramér. Mathematical Methods of Statistics. Prince-
ton University Press, Princeton, 1946. Chapter 21, The two-
dimensional case, page 282. Table of contents archived at
Wayback Machine, 2016-08-16. 6

[5] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conot-
ter, and Giulia Boato. Raise: a raw images dataset for digital
image forensics. In Proceedings of the 6th ACM Multimedia
Systems Conference, page 219-224, New York, NY, USA,
2015. Association for Computing Machinery. |

[6] Fabrizio Guillaro, Davide Cozzolino, Avneesh Sud, Nicholas
Dufour, and Luisa Verdoliva. Trufor: Leveraging all-round
clues for trustworthy image forgery detection and localiza-
tion, 2023. 3

[7] Xiaodan Ju et al. Brushnet: Plug-and-play image inpainting
with user guidance. In Proceedings of the IEEE/CVF Con-



Inpainted

CatNet
Retr

MMFusion

| e @ | | [fw

4 7/
A , { 1

g |4 AW |C 4
ﬁ-[_]-n---l ]
v e,
--L\------

PSCC
Retr

TruFor
Retr

Figure 5. Comparison of forgery localization results. For each row, from left to right: inpainted image, followed by localization maps from
CatNet, MMFusion, PSCC, and TruFor models, showing both original (Orig) and retrained (Retr) versions.

(8]

(9]

(10]

(11]

[12]
[13]
(14]

ference on Computer Vision and Pattern Recognition, pages
5678-5687, 2024. 1

Myung-Joon Kwon, Seung-Hun Nam, In-Jae Yu, Heung-
Kyu Lee, and Changick Kim. Learning jpeg compression ar-
tifacts for image manipulation detection and localization. In-
ternational Journal of Computer Vision, 130(8):1875-1895,
2022. 1,3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dolldr, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision — ECCV 2014, pages 740-755, Cham,
2014. Springer International Publishing. |

Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu.
Pscc-net: Progressive spatio-channel correlation network for
image manipulation detection and localization. /IEEE Trans-
actions on Circuits and Systems for Video Technology, 32
(11):7505-7517, 2022. 3

Ara Manukyan. Hd-painter: High-resolution prompt-faithful
text-guided image inpainting, 2024. 1

OpenAl. Chatgpt-3.5, 2023. 1

OpenAl. Chatgpt-4, 2023. 2

Karl Pearson. X. on the criterion that a given system of devi-
ations from the probable in the case of a correlated system of
variables is such that it can be reasonably supposed to have

[15]

(16]

(17]

(18]

(19]

(20]

arisen from random sampling. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 50
(302):157-175, 1900. 6

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2022. 1

Konstantinos Triaridis and Vasileios Mezaris. Exploring
multi-modal fusion for image manipulation detection and lo-
calization, 2023. 3

Ning Yu, Xiang Zhao, and Bo Chen. Inpaint-anything: Seg-
ment meets inpaint. arXiv preprint arXiv:2304.06790, 2023.
1

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models, 2023.
1

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric, 2018. 3

Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan,
and Kai Chen. A task is worth one word: Learning with task
prompts for high-quality versatile image inpainting, 2024. 1



(a) “ajuicy orange to add a vibrant pop of color to  (b) “a majestic snow-capped mountain to create a
the composition” scenic landscape”

(d) “a cozy blanket and fluffy pillows to complete  (e) “a grand marble fountain surrounded by lush
the bedroom scene” greenery”

(h) “a cluster of small red berries growing in the
grass”

(j) “a fresh, delicious sandwich to complete the (k) “a clear blue sky to enhance the mountain
meal” landscape” (1) “aripe golden delicious apple”

(m) “a delicious cheeseburger to make the meal (n) “a lush green meadow, adding a touch of na- I / /
ed wooden eagle head”

even more tempting” ture to the serene landscape” (o) “an intricately carv

(p) No prompt (q) No prompt (r) No prompt

Figure 6. Example pairs of original images (with inpainting mask overlaid in semi-transparent red) and their corresponding inpainted
results across three datasets: COCO (first column), RAISE (second column), and Openlmages (third column). Each row showcases results
from a different inpainting model: BrushNet, PowerPaint, HD-Painter, ControlNet, Inpaint-Anything, and Remove-Anything. The text
below each pair shows the prompt used for text-guided models.



(e) “a playful panda bear imitating a martial arts
move”

(f) “a fluffy orange tabby cat with bright blue”

P

W7g | ——

(g) “vibrant red cherries to create a fruity collage
effect”

(i) No prompt

SRS — == (k) “abright red mailbox to blend seamlessly into
(j) “a group of young adults playing frisbee” the park scene”

(m) “a majestic lion standing proudly in the sa- 4
(0) “a majestic eagle perched on”

vanna”

f : : - -«—m i :

(r) “a friendly raccoon walking across a stone wall

(p) “a woman wearing a scarf and holding a bou-
quet of flowers” (q) “a bowl of fresh fruits” near trees”

Figure 7. Examples of failure cases in inpainting. Row 1: LLM-generated prompts that fail to match the image context. Row 2: Technically
sound inpainting results that generate improbable real-world scenarios. Row 3: Results with visible artifacts and blurs. Row 4: Realistic
inpaintings that don’t follow the given prompts. Row 5: Cases where the inpainting fails to produce coherent results. Row 6: Realistic but
uncanny results that human observers can potentially identify as artificial.
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