Skeleton Motion Words for Unsupervised Skeleton-Based Temporal Action
Segmentation

Supplementary Material

1. Implementation Details and Evaluation
Metrics

1.1. Implementation Details

In SMQ, both the encoder and decoder use a two-stage
Temporal Convolutional Network (MS-TCN), with each
stage comprising three dilated residual layers to effectively
capture temporal dependencies. The codebook size corre-
sponds to the number of ground-truth actions in the dataset
as it is required by the protocol. The patch size is fixed
to cover one second of frames, adjusted according to each
dataset’s fps. For the codebook updates, we use an expo-
nential moving average (EMA) with a decay factor of 0.5,
and A is set to 0.001. The model is trained using the Adam
optimizer with a learning rate of 0.0005, with a batch size
of 8 for the LARa and HuGaDB datasets and 32 for the BA-
BEL subsets. Training is conducted on a single NVIDIA
RTX 4090 GPU.

1.2. Evaluation Metrics

In the unsupervised temporal action segmentation setting,
the predicted clusters from the model do not inherently cor-
respond to the ground truth actions. To address this, we
employ the global Hungarian matching algorithm follow-
ing the previous methods [5, 6, 6, 9, 13, 15], which estab-
lishes a one-to-one mapping between predicted segments
and ground truth labels across the entire dataset. This map-
ping is used for calculating evaluation metrics, ensuring that
each predicted cluster is properly aligned with its corre-
sponding ground truth action.

We report both frame-based and segment-based metrics
[2-4]. Mean over frames (MoF) measures the proportion
of correctly predicted frames but does not account for over-
segmentation. To better assess prediction quality, we also
report segmental metrics: the edit score [7], based on the
Levenshtein distance, and the segmental F1 score [8] at In-
tersection over Union (IoU) thresholds of 10%, 25%, and
50% (F1@10, 25, 50). These metrics provide a more com-
prehensive evaluation by penalizing over-segmentation and
capturing alignment between predicted and ground truth
segments.

2. Results on PKU-MMD v2

PKU-MMD v2 [10] contains 1009 skeleton sequences span-
ning 41 action categories, performed by 13 subjects. Each
sequence lasts approximately 1 to 2 minutes and includes
around 7 action instances. The data were recorded at 30

Method | MoF Edit F1@{10, 25,50}
CTE [5] 86 45 1.8 1.0 04
CTE + Viterbi [5] | 8.1  10.8 34 23 1.0
TOT [6] 66 30 06 02 0.1
TOT + Viterbi [6] [ 15.1 10.8 58 42 22
ASOT [15] 90 94 60 44 24
SMQ (ours) 132 13.8 13.8 10.6 5.6

Table 1. Comparison to unsupervised temporal action segmenta-
tion methods on the PKU-MMD v2 dataset.

fps using a Kinect v2 sensor. Each frame provides the 3D
positions of 25 full body joints. To prepare the dataset, we
centered the skeletons from the root joint to ensure transla-
tion invariance.

As shown in Table 1, SMQ achieves the best performance
across all metrics except for MoF, where CTE + Viterbi is
slightly better. The overall scores remain low due to the
challenging nature of the PKU-MMD v2 dataset, which in-
cludes 41 action categories and approximately 40% back-
ground (none) frames, making it particularly difficult for
unsupervised temporal action segmentation. We also show
qualitative results on PKU-MMD v2 in Figure 1.

3. Additional Ablations

3.1. Impact of Disentangled Embedding

To further analyze the impact of the disentangled embed-
ding, we conducted an ablation study comparing two asym-
metric encoder-decoder configurations. In the first con-
figuration, the encoder processes each joint independently,
while the decoder concatenates the features to reconstruct
the skeleton. In the second configuration, the encoder con-
catenates all joint features, which are then processed sepa-
rately in the decoder. Results in Table 2 show that indepen-
dently processing joints in both the encoder and decoder
yields the best performance, demonstrating the critical role
of keeping joints disentangled throughout the architecture.
Moreover, processing joints independently in the encoder
alone achieves the second-best performance, highlighting
the significance of encoding joint-specific features for cap-
turing fine-grained skeleton dynamics, which appears fun-
damental for effective skeleton-based temporal action seg-
mentation.
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Figure 1. Qualitative results for unsupervised action segmentation
algorithms on the PKU-MMD v2 dataset.

Independence | Metrics

Encoder Decoder | MoF Edit F1@{10,25,50}
v X 359 372 340 27.8 163
X v 28.1 339 29.8 239 137
v v 374 394 347 284 164

Table 2. Impact of independent joint embedding in the encoder or
decoder on the LARa dataset.

3.2. Impact of Initialization

We initialize the codebook randomly. In Table 3, we com-
pare it to the initialization using time series k-means [14].
The results show the model’s robustness to different initial-
ization strategies.

Initialization MoF Edit F1@{10, 25,50}

374 394 347 284 164
373 402 352 282 16.0

Random
K-Means

Table 3. Impact of initialization on the LARa dataset.

Autoencoder MoF Edit F1@{10, 25,50}
ST-GCN 342 385 329 257 144
MS-TCN 374 394 347 284 164

Table 4. Evaluation of different autoencoders on the LARa dataset.

Position (mm) Orientation (deg) MoF Edit F1@{10, 25,50}

v X 339 392 353 281 163
X v 237 239 173 11.7 52
v v 374 394 347 284 164

Table 5. Impact of input skeleton representation on the LARa
dataset.

3.3. Impact of Autoencoder

To evaluate the effect of different autoencoder architectures
on SM(Q, we maintain consistent settings while changing
the autoencoder architectures. Specifically, we compare
the joint-based disentangled Multi-stage Temporal Convo-
lutional Network (MS-TCN) [3] autoencoder with a Spatial-
Temporal Graph Convolutional Network (ST-GCN) [16]
autoencoder. This comparison allows us to assess how each
autoencoder architecture influences the performance of our
model. Table 4 demonstrates that the MS-TCN autoencoder
consistently achieves better performance compared to ST-
GCN.

3.4. Impact of Input Skeleton Representation

In this ablation, we investigated the impact of different in-
put skeleton representations. Specifically, we analyzed how
LARa dataset’s features, 3D position coordinates and orien-
tation angles, contribute to the overall performance of SMQ.
We conducted experiments where the model was trained
with (i) only position coordinates, (ii) only orientation an-
gles, and (iii) a combination of both. The results in Table 5
demonstrate that using both representations yielded the best
performance, with position coordinates alone being the sec-
ond most effective. This indicates that while both position
and orientation contribute to the action segmentation, posi-
tion information plays a more significant role.

3.5. Impact of Patching

We provide a qualitative comparison between the latent rep-
resentations of SMQ for two different patch sizes in Fig-
ure 2. We plot the self-similarity matrices of a skeleton



LARa
Method MoF Edit F1@{10,25,50}
Patch + CTE [5] 25.8 293 215 162 84

Patch + TOT [6] 193 28.1 214 144 64
Patch + ASOT [15] | 21.1 215 194 12,6 52
SMQ (ours) 374 394 347 284 164

Table 6. Evaluation of unsupervised temporal action segmentation
methods with patched skeleton input on the LARa dataset.

CTE TOT ASOT SMQ

HuGaDB 7.8 325 2.2 9.8
LARa 40.2 798 4.3 44.0

Table 7. Runtime (mins) for the HuGaDB and LARa datasets.

sequence from the LARa dataset based on the learned rep-
resentation for patch size 1 and 50. For patch size 1, the
learned representation is quite noisy.

We also evaluate the effectiveness of patch-based pro-
cessing for other unsupervised temporal action segmenta-
tion approaches. To achieve this, we partition the input
skeleton features into non-overlapping patches following
the latent patching mechanism introduced in our frame-
work. Subsequently, these patches are concatenated into
a single elongated vector, which is then fed to the un-
supervised action segmentation methods. Note that SMQ
performs patching in the latent space, which is not pos-
sible with the other methods. Table 6 shows that patch-
based processing improves segmental metrics for CTE and
TOT. This is likely because predictions of the actions are
in patch-level, which have coarser granularity, preventing
over-segmentation. However, there is no notable increase
in MoF. In contrast, ASOT, which already tends to predict
longer segments, shows a decrease in performance under
patch-based processing. Even if patch-based processing is
added to CTE, TOT, and ASOT, SMQ outperforms them.

3.6. Runtime

Table 7 compares the runtime of various unsupervised tem-
poral action segmentation methods when processing the en-
tire datasets on a computer with a single NVIDIA RTX
4090 GPU. While the runtime of SMQ is higher compared
to CTE [5] and ASOT [15], all methods are very fast and
process entire datasets in less than 80 minutes.

3.7. Visualization of Embeddings

Furthermore, we visualize latent embeddings using t-SNE
in Figure 3. We color each point based on ground-truth la-
bels, and each point represents a latent patch. The plots
reveal that SMQ produces a more distinctive action repre-
sentation compared to other methods.

Num of actions (K) MoF Edit F1@{10, 25,50}

3 41.8 409 41.7 339 20.0
4 44.0 422 412 353 21.7
5 419 39.0 37.6 31.2 18.0
6 382 394 36.7 29.8 173
7 374 412 358 29.1 16.8
8 (GT) 374 394 347 284 164
9 327 394 347 279 163
10 340 36.8 33.5 27.0 155

Table 8. Effect of varying K for the LARa dataset.

3.8. Impact of Number of Actions (K)

Providing the ground truth number of action classes (K) is
standard in the evaluation of unsupervised video-based tem-
poral action segmentation methods [5, 6, 15]. Accordingly,
we used this procedure in our experiments. To assess our
model’s robustness to variations in K, we conducted an ab-
lation study by systematically changing the provided num-
ber of action classes on the LARa dataset as shown in Ta-
ble 8. Our results demonstrate that the model consistently
maintains strong performance despite changes in K, high-
lighting its robustness. Figure 4 shows some qualitative re-
sults for different values of K. Note that a smaller value of
K discovers less actions.

In practice, the value of K can be determined by the sil-
houette score, which quantifies both cohesion within clus-
ters and separation between them. The silhouette score is
calculated based on the latent patch embeddings and their
corresponding cluster assignments. Figure 5 shows the
patch-based silhouette score [14] and MoF for different K
values. Since the silhouette score is highly correlated with
Mok, it can be used to determine K.

3.9. Sequence-level Temporal Action Segmentation

While our approach is designed to discover and segment
actions across entire datasets, it can also be evaluated on in-
dividual sequences. To ensure a fair comparison, we apply
local Hungarian matching on each skeleton sequence sep-
arately, determining the best ground-truth-to-cluster-label
mapping per sequence. Sequence-level temporal action seg-
mentation methods [1, 11, 12] require the number of actions
per sequence, so the average number of unique actions per
sequence is calculated over the entire dataset and provided.
The results are reported in Table 9. SMQ outperforms
sequence-level segmentation approaches, even though these
techniques benefit from local Hungarian matching based on
the average number of actions per sequence. In contrast, our
approach only requires the total number of actions K in the
dataset, not per sequence.
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Figure 2. Comparison of self-similarity matrices for ground truth labels (a), patch size 1 (b) and 50 (c).
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Figure 3. The t-SNE visualizations of the input skeleton features and latent embeddings generated by various methods on the LARa dataset.
Each point corresponds to a patch, and the colors represent the ground truth action labels.

3.10. Robustness to Missing Joints

To assess robustness to missing joints, we performed an
ablation study on the LARa dataset by randomly dropping
25% (5 joints) and 50% (11 joints) of the 22 full-body joints
using three different random seeds. We trained and evalu-
ated the model under each setting and averaged the results.
Additionally, we evaluated a structured setting where only
the wrist and hand joints from both arms were removed. As
shown in Table 10, randomly dropping joints did not lead to
a substantial performance drop, demonstrating SMQ’s ro-

bustness to incomplete or degraded skeleton data. How-
ever, removing the wrist and hand joints resulted in a more
noticeable decline, suggesting that these joints carry seman-
tically important cues for distinguishing actions.
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