
A. Video Examples
Please refer to https://romosfm.github.io/ to
view videos of our results. We show video motion segmen-
tation results on FBMS59, DAVIS16, and TrackSegv2
compared to OCLR-adap [18]. We further show masked
video results on the Casual Motion dataset, and some
in-the-wild video samples.

B. Optical flow limitations – Figure 1
Despite recent advancements that have made optical flow
prediction networks a powerful and versatile tool, there are
inherent limitations to optical flow. One is the ambiguity of
flow predictions for shadows [13]. This can lead to an inabil-
ity to detect moving shadows as distinct moving entities in
our segmentation masks (top of Fig. 1).

Another key limitation are objects that appear and disap-
pear almost instantly, such as the arm in our ‘Table Objects’
scene. These abrupt changes behave similar to occluded
areas where the flow is ambiguous and fail the cycle consis-
tency check, rendering nearly all pixels from such objects
unusable for our weak inlier/outlier annotations (bottom of
Fig. 1).

C. Scene optimization with distractors – Fig. 2
Videos, as a collection of images of a scene, can be used to re-
construct the 3D scene using methods like Neural Radiance
Fields (NeRFs) [8] or 3D Gaussian Splatting (3DGS) [4].
However, transient inconsistencies, such as passing pedes-
trians, often violate the static scene assumption of these
techniques, appearing as noise in the reconstruction. These
inconsistencies, referred to as distractors, can be filtered
out through robust 3D optimization methods, such as those
proposed in [10–12].

RoMo can similarly be be applied to the problem of 3D
optimization from such videos by incorporating its motion
masks into a standard 3DGS model. We filter out dynamic
pixels from the photometric loss, following the approach
in Sabour et al. [11]. Similar to Sabour et al. [12], the struc-
tural similarity loss is not utilized in training the 3DGS
model. Qualitative results for this application are presented
in Fig. 2 for the “patio” scene from the NeRF On-the-go
dataset [10], which has the temporal order of frames pre-
served, allowing us to compute optical flow.

Observe that RoMo effectively masks moving human
distractors in this scene. We compare against results from
SpotLessSplats (SLS) [12], a robust 3D optimization method
for 3DGS. The results show that SLS masks more effectively
capture shadows and secondary effects, which RoMo misses
due to optical flow limitations as discussed earlier. However,
the results for SLS show leaked distractors in areas of the
scene which are sparsely sampled in the training set. This
is due to the imbalance of learning rates between the mask
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Figure 1. Optical flow ambiguities in the presence of shadows
and occlusion. Top: Optical flow of the cow’s shadow follows the
ground beneath it, although it has a similar movement to the cow.
Bottom: The fleetingly appearing arm does not pass optical flow
cycle consistency and is completely filtered akin to occluded areas.

predictor of SLS and its 3D model, i.e. the 3D model over-
fits to the distractor faster than the mask predictor learns its
mask. Adjusting the training schedule to better balance the
learning of the mask predictor and the 3DGS model can help
mitigate this issue. This highlights the inherent challenge
of finding an optimal learning rate balance between the two
modules in SLS. In contrast, our approach avoids this prob-
lem entirely, as RoMo masks are computed as preprocessing
on the video and provided as input to the 3DGS model op-
timization. Because RoMo masks operate independently
of the 3D optimization pipeline, they can more seamlessly
integrate with various 3D reconstruction methods, such as
NeRF and 3DGS. We believe that while our motion masks
might not fully capture all inconsistencies for robust 3D op-
timization, they can serve as a strong initialization for robust
masks, which can then be further refined using methods such
as SLS. Furthermore, since RoMo does not require camera
poses, as many robust 3D optimizations [10–12] do, it can
help in cases were SfM pipelines like COLMAP [14, 15] fail
due to high distractor rates.

D. Ground-truth in Casual Motion

We investigate the validity of our groundtruth camera poses
by evaluating the accuracy of COLMAP poses and the
robotic arm’s pose reproducibility. To validate COLMAP’s
poses on static captures we evaluate it’s photometric consis-
tency by training 44 3DGS models on the static capture of
the “billiard” scene, each time leaving one image out. The
average PSNR of the held-out images is 38.7dB, indicating
excellent photometric consistency for which camera pose
must be precise. To test the reproducibility of camera trajec-
tories by the robotic arm, we performed multiple runs of the
same trajectory on the robotic arm with the scene designed
to have many visual cues to ensure COLMAP’s success and
ran COLMAP on all captured videos. Across 6 runs of the
arm with a static scene, COLMAP yields an average ATE↓
of 0.04±0.02, an order of magnitude smaller than the errors
reported in Fig. 9 of the main paper.This clearly shows that
COLMAP on a static scene, is more than satisfactory as a

https://romosfm.github.io/


baseline for SfM methods on the same scene but with one or
more dynamic objects.

E. RoMo on Static Scenes
To ensure RoMo does not provide non-zero masks on static
SfM benchmarks which could degrade SfM performance we
test RoMo on the first 100 frames of the 27 static fully-lit
scenes in the ETH3D [16] test set. It correctly identified
static content (producing zero dynamic masks) in 24 scenes.
On average, over all scenes it produces only 0.4% nonzero
pixels per video, but with no impact on COLMAP’s esti-
mates. This significantly outperforms the synthetically su-
pervised SOTA motion segmentation method OCLR [18],
which produced zero masks on only 2 scenes, with an aver-
age of 23.5% nonzero pixels per video.

F. Results on “Casual Motion” – Figure 3
Figure 3 presents a more detailed breakdown of results
from our “Casual Motion” dataset (main paper Figure 9).
It illustrates that supervised baselines, which rely heavily
on synthetic data, have less reliable estimates of camera
pose compared to classic camera estimation methods like
COLMAP [14, 15]. The ‘Money Leaf’ scene exemplifies sig-
nificant challenges for ParticleSFM [21], LEAP-VO [2],
and MonST3R [20], all of which produce notably inferior
results compared to COLMAP. In contrast, our method lever-
ages COLMAP’s strength as a robust camera pose estimator
while addressing its limitations. This enhancement is evident
both quantitatively and qualitatively, particularly at the begin-
nings and ends of trajectories. In these regions, where slower
camera movements with smaller translation are overshad-
owed by the larger motions of dynamic objects, COLMAP’s
estimates often falter. Our approach corrects these errors
effectively by incorporating dynamic masks.

G. Failure scenes of ParticleSFM – Figure 4
Figure 4 presents a detailed comparison of camera pose esti-
mation baselines on scenes where ParticleSFM struggles.
The ‘Table Objects’ scene is particularly challenging due to
rapid camera and rapid object movements, which result in
motion blur and sparse dynamic objects. These factors make
masking difficult for all methods, including ours. COLMAP
is generally robust to this scene because the movements,
though rapid, are temporally sparse. Poor masking how-
ever, can lead to failures in the robust baselines. Qualitative
results show that ParticleSFM [21] focuses its detected
tracks (blue and green) and filtered dynamic tracks (green)
on the static flowerpots, which provide texture and reliable
cues for bundle adjustment in an otherwise plain-textured
scene. This incorrect masking causes ParticleSFM to
completely fail at camera estimation. MonST3R [20] pro-
duces good masks in some frames but fails with empty masks

Training image w/ human distractor Rendered view from vanilla 3DGS

Rendered view from 3DGS+RoMo RoMo mask 

Rendered view from SpotLessSplats SpotLessSplats mask 

Figure 2. Application of RoMo in 3D optimization – with in-
the-wild videos, shows that RoMo can completely mask distractor
humans in the scenes but fails to capture shadows due to optical
flow limitations as described in Appendix B.

in others. LEAP-VO [2] shows no evidence of filtering tracks
associated with dynamic objects (green arrows). Our method
partially fails to detect the fleetingly appearing arm but suc-
cessfully masks out the moving fruits even under heavy blur.

The ‘Stairs’ scene presents a highly occluded environ-
ment. ParticleSFM fails to estimate camera poses for the
final frames with the most occlusions, likely due to the spar-
sity of remaining tracks (blue region in Figure 4). MonST3R
occasionally misses moving people, and LEAP-VO does not
filter tracks of dynamic objects. In contrast, RoMo fully
masks the dynamic people in this scene.

Finally, in the ‘Umbrella Garden’ scene, ParticleSFM
fails to find sufficient tracks due to the high occlusion rate
during its initial stage, leading to a complete failure.

H. Detailed results on MPI Sintel – Table 1
Table 1 presents a per-scene breakdown of results on MPI
Sintel for both our method and unmasked TAPIR [3] tracks
used with TheiaSfM [17].

I. Additional details on baseline experiments
In Fig. 6 of the main paper, we present baseline results
on the Casual Motion dataset. For OCLR[18], we fol-
low the authors experiment settings, where the number of
detected moving objects is set to a fixed number of three.
We perform test-time adaptation of DINO features to the
test video for OCLR-adap. The unsupervised networks for



STM [6] and EM [7] were trained on the Flying Things 3D
dataset [5] and then applied directly to the Casual Motion
dataset, consistent with the authors’ evaluation protocol of
testing their networks across different datasets. For STM, we
adopt the original paper’s approach of selecting the mask that
best matches the ground truth at test time. Since the Casual
Motion dataset contains only a test set, we could not train a
separate model for the Motion Grouping baseline [19]
and instead utilized weights from a network trained on the
FBMS59 dataset [9]. After experimentation, we found that
a video gap of 1 yielded optimal results for this baseline,
which we report in our evaluation.



Dress Hallway

Money Leaf

Stairs

Table Objects

Halloween Plushie

Fails

Fails

COLMAP+Ours COLMAP ParticleSFM LEAP-VO MonST3RBike Hallway

Fails

Billiard

Umbrella Garden

Fails

ATE RPE-T RPE-R
Scene COLMAP+Ours COLMAP COLMAP+OCLR MonST3R LEAP-VO ParticleSFM COLMAP+Ours COLMAP COLMAP+OCLR MonST3R LEAP-VO ParticleSFM COLMAP+Ours COLMAP COLMAP+OCLR MonST3R LEAP-VO ParticleSFM

Bike Hallway 2.77 13.38 - 6.10 5.74 10.36 3.64 5.92 - 2.22 3.95 4.13 1.53 4.46 - 0.57 0.72 0.84
Billiard 1.90 - - 1.54 13.94 1.40 3.08 - - 3.89 5.34 1.99 1.42 - - 1.30 8.19 0.99
Umbrella Garden 7.84 10.80 - 25.83 26.26 - 6.99 14.08 - 11.96 12.18 - 2.30 2.30 - 3.82 6.39
Money Leaf 3.87 4.27 3.48 14.64 16.74 12.08 6.37 6.43 6.37 6.63 7.16 8.92 4.53 4.56 4.56 4.67 6.65 5.9
Dress Hallway 1.96 2.61 2.10 4.50 17.56 2.10 2.68 4.06 2.76 4.21 4.64 2.90 1.97 2.56 1.97 2.83 1.98 1.79
Stairs 0.51 0.72 - 0.72 1.35 - 0.53 0.65 - 1.16 1.04 - 0.12 0.15 - 0.74 0.30 -
Halloween Plushie 1.16 1.16 - 5.78 19.27 1.38 0.99 1.05 - 4.18 4.51 1.10 0.43 0.45 - 1.64 5.93 0.46
Table Objects 2.31 1.06 2.64 4.90 4.09 - 1.12 0.73 1.19 3.97 1.45 - 0.45 0.72 0.56 2.43 0.8 -

Figure 3. Detailed results on “Casual Motion” – show that our method can be paired with a bundle adjustment technique (COLMAP [14])
to make it more robust to dynamic scenes, often outperforming SoTA methods for camera estimation on such scenes.
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Figure 4. Detailed results on ParticleSFM [21] failing scenes – shows that over masking static regions can lead to bundle adjustment
failure. Moreover, sparse tracks on highly occluded frames can lead to failure.

Scene Our Masks + TAPIR tracks + TheiaSFM TAPIR tracks + TheiaSFM
ATE RPE (T) RPE (R) ATE RPE (T) RPE (R)

alley 2 0.001 0.001 0.018 0.001 0.001 0.020
ambush 4 0.014 0.015 0.188 0.017 0.014 0.159
ambush 5 0.004 0.004 0.068 0.037 0.027 0.750
ambush 6 0.003 0.002 0.047 0.150 0.090 1.802

cave 2 0.773 0.176 0.626 0.782 0.170 0.683
cave 4 0.005 0.003 0.019 0.078 0.046 0.283

market 2 0.014 0.012 0.112 0.068 0.028 8.483
market 5 0.010 0.003 0.027 0.012 0.004 0.029
market 6 0.006 0.005 0.037 0.051 0.022 0.800
shaman 3 0.001 0.001 0.213 0.005 0.003 0.680
sleeping 1 0.009 0.009 0.898 0.011 0.013 1.267
sleeping 2 0.001 0.001 0.026 0.001 0.001 0.026
temple 2 0.002 0.002 0.009 0.002 0.002 0.008
temple 3 0.456 0.128 0.743 0.626 0.204 1.452

Avg 0.093 0.026 0.217 0.132 0.045 1.175

Table 1. Per scene breakdown of MPI Sintel [1] results.
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