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A. Limitations and Future Work
In this work, we propose CARP, a next-generation paradigm
for robotic visuomotor policy learning, which effectively bal-
ances the long-standing trade-off between high performance
and high inference efficiency seen in previous autoregressive
modeling (AM) and diffusion modeling (DM) approaches.
Despite these advancements, there remain several limitations
and opportunities for improvement in near-future research.

First, the architectural design of CARP can be further
optimized for simplicity. Currently, CARP employs a two-
stage design, where the first stage utilizes separate multi-
scale action VQVAE modules for each action dimension to
address their orthogonality. A promising direction for future
work could focus on developing a unified one-stage method
that integrates multi-scale tokenization with the coarse-to-
fine prediction process, resulting in a more efficient and
streamlined framework without compromising performance.

Second, CARP’s multimodal capacity has not yet been
fully explored or leveraged. To address the inherent uni-
modality of conventional autoregressive policies trained with
MSE loss, CARP employs a Cross-Entropy objective that
preserves the potential for multi-modal predictions. Com-
pared to the Diffusion Policy [7]’s ability to model multi-
modality via DDPM’s integration over stochastic differential
equations [10], CARP adopts a more direct yet effective
alternative that achieves comparable multimodal expressive-
ness. Nevertheless, the role of multi-modality in visuomotor
policy learning remains underexplored. Many current bench-
mark tasks either do not require diverse output distributions
or tend to induce overfitting to a single prediction path. Fu-
ture research should investigate the necessity of multi-modal
reasoning in robotic decision-making and further harness
CARP’s capacity to model action diversity.

Third, CARP’s adoption of the GPT-style paradigm
opens up promising yet unexplored possibilities. Beyond the
flexibility already demonstrated, the contextual understand-
ing capabilities inherent in GPT-style architectures [21] sug-
gest that CARP could be extended to support multi-modal in-
puts [2, 22] like tactile and auditory information and address
robotic tasks requiring long-term dependency reasoning [1].
Moreover, its inherent capacity for in-context learning sug-
gests strong potential for generalization under few-shot and
zero-shot learning settings [5], making it a compelling foun-
dation for more adaptive and versatile visuomotor policies.

Finally, but not exhaustively, the scaling potential of
CARP presents a promising avenue for future exploration.
The scaling laws established in existing GPT-style mod-

els [13] could be seamlessly applied to CARP, suggesting
that increasing model capacity and leveraging larger pre-
training datasets could lead to substantial performance gains.
Furthermore, recent advances in Vision-Language-Action
(VLA) [4, 14, 18] models present a promising opportunity
to integrate CARP into such frameworks. Such integration
could further demonstrate CARP’s scalability and its poten-
tial for general-purpose embodied intelligence.

B. Coarse-to-Fine Inference
Unlike the training process, the inference process predicts
token maps of the action sequence across different scales in
an autoregressive next-scale, coarse-to-fine manner without
teacher forcing, as illustrated in Fig. 1. Additionally, kv-
caching is employed to eliminate redundant computations.
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Figure 1. Coarse-to-Fine Autoregressive Inference. During infer-
ence, we leverage kv-caching to enable coarse-to-fine prediction
without the need for causal masks. The full set of token maps, r1:K ,
is collectively decoded by the action multi-scale VQVAE into exe-
cutable actions for the robotic arm.

C. Definition of Autoregressive Policy
Autoregressive policies naturally capitalize on the efficiency
and flexibility of autoregressive models. Initial works from
a reinforcement learning perspective applied models like
Transformers to predict the next action using states or re-
wards as inputs [6, 11], as shown in Fig. 2 and formalized as

p (at,at+1, ...,at+H−1) =

t+H−1∏
k=t

p (ak|ak−H:k−1, sk−H:k) ,

(1)
where sk−H:k−1 represents the states or observations corre-
sponding to the previous actions ak−H:k−1, and sk is the



current state or observation. Following this paradigm, sev-
eral subsequent works [12, 23, 25] employ autoregressive
models to predict one action at a time during inference.
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Figure 2. Conventional Autoregressive Policy. In reinforcement
learning, conventional autoregressive policies generate action to-
kens sequentially, where each token is predicted based on the pre-
viously generated tokens. This differs from the action chunking
prediction (see Sec. 2.2 of the main paper).

More recently, the concept of action chunking [15], de-
rived from neuroscience, has demonstrated notable benefits
for imitation learning [8, 17, 24, 28]. In action chunking, in-
dividual actions are grouped and executed as cohesive units,
leading to improved efficiency in storage and execution, as
depicted in Fig. 2a of the main paper. This paradigm extends
the capabilities of GPT-style decoders by modifying them to
generate chunks of actions in one forward pass, replacing the
traditional single-step autoregressive operation with a multi-
token, pseudo-autoregressive process. The action generation
process for this paradigm is described as

p (at,at+1, . . . ,at+H−1) =

t+H−1∏
k=t

p (ak|sO) , (2)

where O is the historical horizon. The model predicts the
entire action sequence in one forward pass without strictly
adhering to step-by-step autoregressive operations.

Given the significant performance improvements enabled
by action chunking, we adopt this multi-token, one-forward-
pass framework throughout the article and experiments when
referring to Autoregressive Policy (AP).

D. Efficiency Concerns
Efficiency, as discussed throughout this paper, specifically
refers to inference efficiency—the ability of CARP to gener-
ate actions significantly faster than diffusion-based policies
during deployment. While efficiency can be examined from
various perspectives, we focus on three key aspects relevant
to CARP: inference efficiency, training efficiency, and data
efficiency, each of which is analyzed in detail below.

Inference Efficiency. We analyze the inference efficiency
of CARP’s two-stage process. During inference, CARP first
predicts action tokens in a coarse-to-fine manner, followed

Task
CARP

DPPredict Decode
Can 2.279 s 0.639 s 34.79 s
Square 2.597 s 0.679 s 35.62 s

Table 1. Inference Efficiency Comparison. We report the time con-
sumption for the coarse-to-fine prediction phase and the subsequent
action decoding phase over 400 timesteps of action generation. The
results indicate that in CARP, the majority of inference time is
allocated to the prediction step, whereas the decoding process is
completed within a short duration.

by a single forward pass to decode all token maps into exe-
cutable actions. Since token maps are collected during the
prediction phase, and decoding requires only a single for-
ward computation, the majority of the computational cost is
incurred during prediction, while action decoding remains
relatively lightweight. This is empirically validated by the
results in Tab. 1. Compared to DP, CARP achieves signifi-
cantly faster inference by eliminating the iterative denoising
steps required by diffusion-based policies, instead directly
predicting actions as a low-dimensional generation problem.

Training Efficiency. We analyze training efficiency
through convergence behavior and time consumption.

While training convergence depends on task complexity
and hyperparameter configurations, both CARP and DP ex-
hibit stable learning dynamics under our respective settings.
To accommodate the architectural differences of CARP, we
employ slightly different training configurations from those
used for DP. As shown in Fig. 3, under our experimental set-
tings, both DP and CARP achieve good convergence within
the same number of training epochs. While convergence
speed may differ due to structural and training differences,
it does not inherently indicate superiority in model design.
Instead, both CARP and DP demonstrate reliable training
behavior under their respective settings.

Square - DP Square - CARP

Figure 3. Training Efficiency on Convergence Analysis. With
different training configurations, both DP and CARP converge
effectively within 4000 epochs in the state-based Square task.

In terms of wall-clock training time, a comparison is pro-
vided in Fig. 4. The total training cost of CARP is compara-
ble to that of DP when considering the policy learning stage
(CARP-TF) alone. Although CARP introduces an additional
tokenizer pretraining phase (CARP-VQ)—where separate



CPU MemoryGPU MemoryGPU hours

18.13 GB3.06 GB12.17 hDP-C

15.51 GB1.56 GB10.83 hDP-T

2.55 GB0.69 GB4.67 h (28min×10)CARP-VQ

19.86 GB2.91 GB13.85 hCARP-TF

* Test on state-based Square with 200 trajectories using a V100 GPU.
* A distinct VQ is trained for each dimension (10 total in our setting).

* Similar results across simulation and real-world dataset.

Figure 4. Training Efficiency on Time Consumption. Comparison
of training time on the Square task. For CARP, we separately report
the tokenizer training time (with 10 VQ-VAEs, one per action
dimension) and policy learning time.

VQ-VAEs are trained for each action dimension—the cost is
amortized across tasks and environments. In particular, when
trained on sufficiently diverse data (e.g., multi-task settings
in both simulation and the real world), the tokenizers become
reusable, substantially reducing the overall training burden
in practical deployments.

Data Efficiency. We further assess the data efficiency of
CARP by evaluating its performance under varying amounts
of training data. Specifically, we investigate whether CARP
can maintain strong performance when trained with limited
trajectories, indicating robustness to data scarcity. As shown
in Fig. 5, we compare CARP with baseline policies (follow-
ing implementations from [7]) on the state-based Square
task, using training datasets ranging from 200 to 30 trajecto-
ries. CARP consistently outperforms the baselines across all
data regimes, demonstrating its superior data efficiency and
reduced reliance on large-scale datasets.

Figure 5. Data Efficiency Analysis. Performance comparison un-
der varying training dataset sizes on the Square task. Each policy is
trained following its official best-practice settings. CARP consis-
tently outperforms the baselines at all data scales.

E. Comparative Analysis of CARP and AR.
CARP outperforms traditional autoregressive (AR) mod-
els in terms of success rate while maintaining high compu-
tational efficiency. CARP adopts a straightforward action
tokenizer and leverages a GPT-style transformer for pre-
diction, similar to standard AR policies. However, instead
of conventional next-token prediction, CARP introduces a
paradigm shift towards next-scale prediction. Despite these
seemingly minor modifications, CARP achieves substantial
performance gains. In this section, we analyze the key factors
contributing to this improvement.

Temporal Locality. CARP encodes action sequences into
a latent space in its first stage. Specifically, it employs 1D
convolution to explicitly capture the local correlations within
actions, facilitating a more effective learning of temporal de-
pendencies—something that step-by-step action modeling
struggles to achieve. As depicted in the magnified region
of Fig. 7, encoding actions into a latent space enhances the
smoothness of predictions while simultaneously denoising
raw actions. This encoding process enables the model to cap-
ture similarities and overarching trends across contiguous
actions, leveraging temporal locality to its advantage. While
recent work on action chunking [28] has highlighted the sig-
nificance of temporal locality, existing next-token prediction
models still suffer from weakened action dependencies due
to their traditional independent action output mechanisms.

Global Structure. CARP represents action sequences
across multiple scales and predicts actions in a coarse-to-
fine manner. The coarser scales compress the sequence us-
ing fewer tokens, promoting the learning of global action
patterns. This hierarchical representation explicitly models
the overall structure of action sequences—an aspect that
traditional unidirectional next-token prediction struggles to
capture. By progressively refining actions from high-level to
low-level representations, CARP enhances sequence stabil-
ity and mitigates the risk of producing erratic, inconsistent
motions, leading to more precise execution.

Action Scalability. Similar to the approach used in Dif-
fusion Policy, encoding action sequences improves the scal-
ability of action generation. By encoding action sequences,
CARP enables flexible adjustments to sequence length with
minimal modifications to the model architecture, offering
greater adaptability across different tasks and environments.

Figure 6. Raw vs. Reconstructed Actions (Jointly Trained VQ-
VAE). Flattening and jointly encoding all action dimensions into a
single VQ-VAE leads to poor reconstruction, as shown by the large
discrepancy between raw (blue) and reconstructed (red) trajectories.
This highlights the limitation of naive joint encoding.
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Figure 7. Comparison of Raw and Reconstructed Actions. Com-
parison across 10 action dimensions in the Coffee and Stack Three
tasks. Reconstructed actions (red) closely align with raw signals
(blue), preserving structural patterns while smoothing the sequences
and filtering out noise (see magnified region), highlighting the ef-
fectiveness of our multi-scale tokenization.

Precision in Encoding. Adapting the multi-scale VQ-
VAE to action space necessitates careful architectural design.
Rather than flattening the action trajectory into an image-
like structure and training a single joint VQ-VAE—which
leads to unstable and less interpretable tokens (Fig. 6)—we
instead encode each action dimension independently, using
a dedicated VQ-VAE per dimension. As illustrated in Fig. 7,
the multi-scale tokenization process ensures that generated
action sequences closely match the raw inputs, exhibiting
nearly identical trajectory lines while yielding smoother mo-
tions. This demonstrates that our action tokenization ap-
proach effectively preserves the fidelity of original action
sequences. Moreover, the enhanced success rates observed in
the experiments presented in the main paper further validate
the accuracy and effectiveness of CARP’s design.

F. Additional Baselines Comparison

In addition to the baseline policies discussed in the main
paper, we further compare CARP with enhanced versions
of each category: VQ-BET [17], an improved variant of
BeT [24], and Consistency Policy [20], which reduces sam-
pling steps to improve inference efficiency. Both are imple-
mented using their official codebases with recommended

settings. As shown in Tab. 2, CARP achieves consistently
higher success rates across all tasks, while maintaining com-
petitive inference time. These results highlight CARP as a
promising design that combines strong task performance
with high inference efficiency.

Policy p1 p2 p3 p4 Inf.T(s)
ConsisP 0.99 0.96 0.95 0.93 2.31
VQ-BeT 0.96 0.92 0.87 0.71 1.48
CARP 1.00 1.00 0.98 0.98 2.01

Push-T Inf.T(s)
0.80 2.93
0.72 1.70
0.88 2.66

Table 2. State-Based Kitchen and Push-T Results. We compare
CARP with VQ-BET [17] and Consistency Policy [20] under iden-
tical settings. CARP consistently outperforms both baselines in
success rate, while offering competitive inference times.

G. Failure Analysis

In this section, we analyze common failure cases observed
during experiments with both the diffusion-based policies
and our proposed CARP.

Accident Recovery. A notable failure mode is the in-
ability to recover from disturbances, as illustrated in Fig. 8.
When tools are accidentally knocked over due to suboptimal
action trajectories, the model struggles to generate appropri-
ate recovery behaviors. This limitation arises because the
policy is trained purely by imitating expert demonstrations,
which do not account for such out-of-distribution failure sce-
narios. Addressing this issue requires further incorporation
mechanisms for failure detection and recovery.

Hesitant Movements. Another common failure case in-
volves the generation of jerky or oscillatory movements
when the robot encounters two similar situations with only
slight visual differences across consecutive timesteps, as
shown in the first row of Fig. 9. This issue arises because
the policy conditions its predictions on only the previous
one or two observations, potentially overlooking long-term
historical context. When faced with multiple plausible ac-
tion choices under limited observations, the policy may pro-
duce ambiguous actions, leading to hesitation. Consequently,
these hesitant movements can prevent the robot from meeting
the success criteria, as shown in the bottom-right of Fig. 9.
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Figure 8. Accident Recovery in the Square Task. When tools are
accidentally knocked over, the robot struggles to recover due to its
reliance on imitation learning from expert demonstrations, which
lack exposure to such out-of-distribution failure cases.
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Figure 9. Hesitant Movements in the Mug Task. During task
execution, the robot may encounter visually similar observations at
different timesteps. Without leveraging long-term historical context,
the policy may misinterpret these similarities and generate ambigu-
ous actions, resulting in hesitant (jerky) movements. In this failure
case, after successfully closing the drawer, the policy perceives
the scene as similar to the initial step and erroneously attempts to
reopen it. This cycle of opening and closing continues indefinitely,
leading to task failure.

H. Experiment Implementation Details
Here, we provide implementation details for the main exper-
iments presented in the paper.

Single-Task Simulation Experiment. For baseline mod-
els, we follow the same implementation and training con-
figurations provided by Diffusion Policy. For all state-based
experiments, including the Kitchen and Push-T tasks, we
uniformly set the observation horizon O = 2 and the pre-
diction horizon H = 16 across all models. For image-based
experiments, we set O = 1 and H = 16 for better transfer-
ability to real-world scenarios. As per the benchmark, only
the first 8 actions in the prediction horizon are executed,
starting from the current step (see Suppl. I for further discus-
sion). For CARP, we first train an action VQVAE model (see
Sec. 3.1 of the main paper) following [16], using V = 512,
C = 8, a batch size of 256, and 300 epochs per task. Given a
horizon H = 16, we design multi-scale representations with
scales of 1, 2, 3 and 4 to capture coarse-to-fine information
across the action sequence. We then train an autoregressive
GPT-2 style, decoder-only transformer (see Sec. 3.2 of the
main paper) , based on [26], using the same training settings
as the benchmark, with a batch size of 256 for state-based
experiments (4000 epochs) and a batch size of 64 for image-
based experiments (3000 epochs). We use Cross-Entropy
loss during training, which preserves the model’s sampling
capability. During inference, we typically select the token
with the highest probability at each scale. However, to visual-
ize multi-modal behavior in the Push-T task, we sample the
top-k tokens at each scale (with k=3), allowing for diverse
predictions with controlled randomness.

Multi-Task Simulation Experiment. To enable multi-
task generalization, CARP augments the single-task formu-
lation by introducing a learnable 3-dimensional task embed-

ding for each task. These embeddings, retrieved based on
task indices, are concatenated with the observation sequence
s and act as additional conditional inputs to the policy. In our
experiments involving 8 tasks, this corresponds to an 8× 3
embedding matrix. We also use a moderately deeper decoder-
only transformer in GPT-2 style. CARP is trained with a
batch size of 512 for 200 epochs on an A100 GPU. Baseline
models follow the same training settings as SDP [27]. This
minimal modification enables CARP to adapt to multi-task
learning seamlessly.

Real-World Experiment. For both baselines and CARP,
the input consists of current visual observations from the
wrist and scene cameras (resolution: 120 × 160), as well
as proprioceptive data from the robotic arm. We execute 8
predicted actions out of a horizon of 16 predictions. We train
the diffusion policy for 3000 epochs with a batch size of 64.
For CARP, we use the same visual policy structure as in the
simulation tasks, training the multi-scale action tokenizer for
300 epochs with a batch size of 256, and the coarse-to-fine
transformer for 3000 epochs with a batch size of 64.

I. Consistent with Diffusion Policy

We adopt similar experimental settings with 1 or 2 observa-
tions, a prediction horizon of 16, and an executable action
length of 8, following the standard setup used in Diffusion
Policy (DP) [7]. It is important to note that our classical for-
mulation introduces a minor discrepancy in the horizon defi-
nition compared to the implementation of DP. Specifically,
in DP’s experimental setting, the horizon H encompasses
the past observed steps, meaning that the index of the cur-
rent next predicted action is O, rather than 0. In contrast, as
outlined in the formulation of Eq. (1) in the main paper, the
horizon H does not include past observations, with the first
prediction step corresponding to the next time step. While
the rationale behind this design remains unclear due to limi-
tations in the author’s understanding, we retain the horizon
definition introduced by Diffusion Policy (DP) [7] to ensure
consistency in our experimental comparisons.

J. Ablation Study on the Number of Scales

To maintain consistency with Diffusion Policy, we set the
action prediction horizon H to 16 across all tasks. Given
H = 16, we adopt K = 4 for all experiments. To further
investigate the impact of K, we conduct an ablation study
by varying K from 1 to 6 on three representative tasks:
Can, Square, and Kitchen (which requires executing four
consecutive subtasks, thus we report success rate based on
the final subtask, denoted as p4). All other experimental
settings remain unchanged.

For each chosen number of scales K, the token map sizes
at each scale level are defined as 1, . . . ,K. Notably, when
K = 5 and K = 6, the scales slightly exceed the default
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Figure 10. Ablation Study on K. We evaluate the performance of CARP across three tasks using six different scale configurations. Results
indicate that when the number of scales exceeds 4, the model achieves optimal performance. Considering both model efficiency and
performance, we set K = 4 in all experiments throughout the paper.

feature map size. To ensure fair evaluation, we appropriately
expand the feature map size to accommodate these settings.

As shown in Fig. 10, using fewer scales leads to insuffi-
cient action tokenization, resulting in less precise predictions.
When K = 4, the policy effectively meets task require-
ments. Further increasing K results in stable performance
with negligible fluctuations, indicating that the policy has
likely reached its peak performance for the given tasks, with
additional scaling providing little to no further benefit.

K. Additional Real-World Experiment
We provide further visualization of the real-world experi-
ments presented in the main paper. As shown in Fig. 11,
CARP generates smooth and successful trajectories for the
Cup and Bowl tasks, with temporal progression illustrated
from left to right.
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Figure 11. Visualization of CAPR on Real-World Tasks. CARP
generates smooth and successful trajectories on the Cup and Bowl
tasks, progressing from left to right.

Beyond the real-world evaluations on a UR5e robot arm,
we further deploy CARP on a distinct robotic embodiment: a
7-DoF Franka Emika Panda arm. For this, we adopt the chal-
lenging FurnitureBench benchmark [9], which comprises
long-horizon, contact-rich manipulation tasks (e.g., pick,

place, insert, screw, and flip), with episodes spanning up
to 1000 steps (700 steps for One Leg). A corresponding
standard simulator is also provided, as shown in Fig. 12.

We first evaluate CARP and Diffusion Policy (DP) in
simulation on three tasks, followed by real-world deploy-
ment of the One Leg task. All experiments are conducted in
the state-based setting. To bridge the sim-to-real gap during
real-world deployment, 6-DoF object poses are estimated
using AprilTags provided by FurnitureBench [9], enabling
consistent state-based policy execution.

For simulation, we use 200 trajectories per task from [3].
DP is trained using its official implementation [7] with 100
DDPM denoising steps. CARP follows the same state-based,
single-task setting. We evaluate success rates using 1024
rollouts per task for statistical stability. As shown in Tab. 3,
CARP achieves competitive performance while offering sig-
nificantly lower inference time and fewer parameters.

One_LegRound_Table Lamp One_Leg in Real-World

Figure 12. FurnitureBench Tasks for Evaluation. All three tasks
are first evaluated in simulation. A corresponding real-world envi-
ronment is then constructed to assess the performance in real-world.

Policy One Leg Round Table Lamp Inf.Time ↓ Params ↓
DP-C 39.62% 5.76% 3.91% 74.05s 66.06M
CARP 43.75% 6.25% 4.30% 6.29s 2.54M

Table 3. Simulation Results on FurnitureBench (State-Based).
All policies are trained under identical single-task settings. Com-
pared to DP-C [7] (with 100 DDPM denoising steps), CARP
achieves comparable success rates while offering significantly
lower inference time and parameter count.



We further evaluate CARP on the real-world One Leg
task using 40 expert demonstrations collected via a 3D Space-
Mouse (left panel of Fig. 13). The task involves complex
rotations and contact-rich interactions, as illustrated in the
right panel of Fig. 13. CARP achieves higher success rates
across key stages, especially in precision-critical steps such
as Insert, demonstrating robust real-world performance.

L. Analysis on Fine-Grained Manipulation
Beyond standard pick-and-place tasks, which are relatively
straightforward for robotic manipulation, tasks requiring
fine-grained skills have garnered increasing attention. For
example, Nut-Assembly and Threading from the Mimic-
Gen [19] benchmark demand precise action generation to
ensure successful task completion, as illustrated in Fig. 14.
In Nut-Assembly, the robot must place a nut onto a desig-
nated peg, which is slightly larger in size. Furthermore, the
Threading task requires the robot to insert a needle into a
small hole on a tripod, a significantly more challenging task
due to the minimal margin for error. To evaluate CARP’s
fine-grained manipulation capability, we compare it with
the state-of-the-art Sparse Diffusion Policy (SDP) [27] in
the multi-task setting, and Diffusion Policy (DP) [7] in the
single-task setting. We evaluate success rates alongside the
mean and variance of the distance between the ideal insertion
centers of the fixed structures (peg, tripod) and the centers
of the tools (nut, needle) at the moment of first contact. A
lower mean distance indicates higher action precision, while
a smaller variance reflects the model’s ability to consistently
achieve accurate and stable manipulations.

As summarized in Tab. 4 and Tab. 5, our coarse-to-fine
autoregressive prediction framework demonstrates strong
performance in fine-grained tasks, achieving competitive re-
sults comparable to diffusion-based policies. Notably, CARP
consistently achieves lower mean error and reduced variance
across most tasks, regardless of whether in single-task or
multi-task settings. Moreover, CARP achieves these results
with an inference speed that is 10 times faster than current
diffusion-based policies, highlighting its efficiency and ef-
fectiveness in fine-grained robotic manipulation.

M. Task Visualizations
In this section, we provide visualizations of the tasks used
in our experiments. For the single-task experiment, the cor-
responding visualizations are presented in Fig. 15. For the
multi-task experiment, visualizations are shown in Fig. 16.
For the long-horizon, multi-stage Kitchen experiment, we
provide visualizations in Fig. 17, along with the sequential
execution process in Fig. 18. Finally, for real-world experi-
ments, visualizations are included in Fig. 19.
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Figure 13. Real-World Evaluation on the One Leg Task. The left panel shows the real-world setup, while the right panel illustrates the
execution process and stage-wise results (left to right). Success rates at key stages are reported below. CARP produces smoother motions
and outperforms baselines in precision-critical phases such as Grasp and Insert.
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Figure 14. Visualization of Fine-Grained Manipulation. We evaluate the precision of generated actions by measuring the distance between
the ideal and actual contact centers, represented by the dotted yellow line. Experiments are conducted on Nut-Assembly (top row) and
Threading (bottom row). The visualization highlights that CARP achieves a comparable level of precision to diffusion-based policies.

Policy Inference Speed ↑
Nut Assembly Threading

Success ↑ Mean ↓ Variance ↓ Success ↑ Mean ↓ Variance ↓
SDP 8.2 hz 0.54 7.70 2.36 0.70 5.20 1.25
CARP 118.5 hz 0.66 7.30 1.68 0.70 5.50 1.36

Table 4. Fine-Grained Manipulation Study on Multi-Task Setting. CARP demonstrates a high level of precision comparable to diffusion-
based policies, as indicated by the similar mean and variance values. Additionally, CARP achieves a significant speed advantage, running
over 10 times faster than diffusion-based approaches. This highlights CARP as a superior balance between performance and efficiency.

Policy Inference Speed ↑
Nut Assembly Threading

Success ↑ Mean ↓ Variance ↓ Success ↑ Mean ↓ Variance ↓
DP-C 10.13 hz 0.80 5.20 1.86 0.88 4.08 1.07
CARP 119.05 hz 0.82 5.12 1.28 0.88 3.92 0.94

Table 5. Fine-Grained Manipulation Study on Single-Task Setting. To eliminate potential underfitting caused by multi-task training, we
evaluate fine-grained tasks under single-task settings. CARP achieves success rates on par with DP-C, while offering lower variance and
over 10× faster inference. These results highlight CARP’s ability to maintain high precision and stability with greater inference efficiency.
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Figure 16. Visualization of Tasks in Multi-Task Experiment.
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Figure 17. Visualization of All Interaction Tasks in Kitchen Experiment.

Figure 18. Visualization of the Consecutive Execution in Kitchen Experiment.
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