
VITAL: More Understandable Feature Visualization through Distribution
Alignment and Relevant Information Flow

Supplementary Material
1. Method
Here, we provide detailed information about the VITAL
framework, the sort-matching procedure, as well as further
implementation considerations for all tested methods. In
Fig. 1, we give an overview of VITAL, with an example
computation of the sort matching (SM) algorithm and its
corresponding pseudo-code provided in Alg. 1.
1.1. Implementation Details
For the experiments, we use a publicly available pretrained
models (ResNet50 [8], DenseNet121 [9], ConvNeXt-base
[11], ViT-L-16 [4], ViT-L-32 [4]) from the PyTorch [13] li-
brary. We report feature visualizations (FVs) of all methods
across three different random seeds for each category of the
ImageNet dataset [3]. In detail,
• for VITAL, we synthesize a single image with resolution

224 × 224 and apply jittering at each optimization step
to promote robustness. We set the number of real images
in our reference dataset 𝑟𝑒𝑓 for the feature distribution
matching as 𝑁 = 50. For the polysemanticity experi-
ments further below, we similarly set 𝑁 = 50 and con-
sider 1000 patches for 𝑘-Means. For optimizing the fea-
ture visualization, we use Adam with a learning rate of
1.0. For intermediate neuron visualizations, we select the
patch size as 64 and set the scales 𝛼TV = 𝛼𝓁2 = 3× 10−6,
𝜆 = 1. We provide ablations for the effects of 𝛼TV, 𝛼𝓁2in Sec. 3.2. After analyzing the effect of each network
component of ResNet50 on our SM loss in Sec. 3.1, we
decided to utilize all the network components. Specif-
ically, For ResNet50, for class neurons, the loss weight
for each block is set to 1.0 whereas for intermediate neu-
rons, we reduce the contribution of block1 to be 0.1. For
DenseNet121 with class neurons, the loss weight for each
block is set to 1.0 except the final block, which is set
to 100.0. For ConvNeXt-base with class neurons, the
loss weight for each block is set to 1.0 except the first
block, which is set to 10.0. For ViT-L-16 with class neu-
rons, for the selected 5 blocks that includes the projec-
tion layer and selected encoder layers, the loss weight for
each block is set to 1.0. Finally, for ViT-L-32 with class
neurons, for the selected 5 blocks that includes the pro-
jection layer and selected encoder layers, the loss weight
for each block is set to 1.0 except the final block, which
is set to 0.1. For the experiments involving the visualiza-
tion of class neurons using LRP with ResNet50, we addi-
tionally utilized auxiliary regularization with parameters
𝛼TV = 𝛼𝓁2 = 0.00001.

• for DeepInversion [16], we synthesize a batch of images
with resolution 224×224 and apply jittering at each opti-
mization step to promote robustness. We adapted the pa-
rameters from their official GitHub implementation [2].
In detail, we use Adam for optimization with a learning
rate of 0.05, and set the scales of the auxiliary regulariza-
tion as 𝛼TV = 0.0001, 𝛼𝓁2 = 0.00001, 𝜆 = 1. For a fair
comparison, we do not apply the teacher-student guidance
that was proposed in Adaptive DeepInversion.

• for MACO [5], we synthesize both regular (224 × 224)
and high resolution (1024 × 1024) images offered by
MACO and we found that higher resolution visualizations
were more human readable. Yet, as shown in the quanti-
tative experiments, this effect seemed more like a subjec-
tive, qualitative finding and did not carry over to CLIP
Zero-shot prediction scores, classification scores, or FID
scores. As suggested by Fel et al. [5], for transformations,
we first add uniform noise 𝛿 ∼  ([−0.1, 0.1])𝑊 ×𝐻 and
augment the data at each iteration with crops of the input
image that are resized to (224 × 224), in which the crop
size drawn from the normal distribution  (0.25, 0.1).
For optimization, we use the Adam optimizer with a
learning rate of 1.0.

• for Fourier [12], we use the same settings as for MACO,
only the initialization of the generated image is changed
to regular Fourier initialization, i.e., without fixed magni-
tude.

• for PII [7], we use the published implementation, includ-
ing the provided batch-size settings for all models except
ConvNext-base (not implemented) with image resolution
of 224 × 224.

Algorithm 1 SM Loss for layer-𝑙
Input: 𝑓𝑙(𝑥) ⊆ ℝ1×𝐶×𝐻𝑊 , 𝑓𝑙(𝑦) ⊆ ℝ𝑁×𝐶×𝐻𝑊

−, IndexX = torch.sort(𝑓𝑙(𝑥), dim = 2)
SortedY,− = torch.sort(𝑓𝑙(𝑦), dim = 2)
SortedY = torch.mean(SortedY, dim = 0)
InverseIndex = IndexX.argsort(−1)
𝑔𝑙(𝑦) = SortedY.gather(−1, InverseIndex)
return 𝑀𝑆𝐸 = torch.mean((𝑓𝑙(𝑥) − 𝑔𝑙(𝑦))2)

1.2. CLIP Zero-shot Prediction
To evaluate the FVs based on how "understandable" they are
in terms of the target class they aim to visualize, we con-
sidered a pretrained CLIP model. The CLIP space [14] is
an effective method for quantifying visualization methods



Figure 1. Overview of VITAL framework. Our VITAL framework mainly consists of two main components. In part (a), we utilize a
pretrained frozen model (❄) to generate visualizations. For the given type of visualization-class neurons or intermediate neurons-we first
select 𝑁 reference images from the ImageNet training dataset, then we optimize a randomly initialized image ( ) through our feature
distribution matching approach, which is applied across multiple layers of the model. For feature distribution matching, we utilize the
feature activations 𝐴 and feature relevance (arrows) 𝐴⊙𝑅 for class neurons and intermediate neurons, respectively. We perform the feature
distribution matching using (b) our sort matching loss, where we compute the difference between the feature distributions of 𝑧 (from synthetic
data) and 𝑧′ (from reference data). We achieve this by first sorting the values and obtaining the sorted indices as 𝜋 and 𝜋′. Considering
that sorting is a discrete operation and we want to allow back-propagation to optimize 𝑧, we obtain a reverse mapping 𝜋̄(⋅) by ① sorting the
indices 𝜋′ to ② re-index 𝑧′ to 𝑧𝑟, which allows 𝑧 to be unchanged. Thus, we were able to ③ match 𝑧 and 𝑧𝑟 through minimizing the MSE
loss. The proposed SM loss can be used in a plug-and-play manner without introducing any parameters, as summarized in Alg. 1.

as it bridges the gap between image and text, thus offer-
ing a powerful measure of how well a visualization aligns
with an intended concept. We perform this experiment to
understand how a different model perceives the visual fea-
tures presented in a FV. Specifically, we load a pretrained
CLIP ViT-B/32 model and expand the ImageNet labels into
descriptive textual prompts (80 templates) [1], such as "a
photo of a {label}" or "a picture of a {label}". The main
goal is to explore how different descriptions of the same
class affect the model’s predictions by varying the phras-
ing of these prompts. We divide the calculation of the zero-
shot prediction scores into two steps. In the first step, we
first associate each class label with the textual prompts and
for each prompt, we compute its embedding using CLIP’s
text encoder. These embeddings are then averaged to ob-
tain a single representative embedding for each class, which
we refer to as their corresponding "zero-shot weight". Each
class is hence represented by a robust and generalized text
embedding. In the second step, we compute the embeddings
of the input images, including our FVs, into CLIP’s shared
feature space using its respective encoders. Then, we com-
pute the cosine similarities between the zero-shot weights
of each class and the image embeddings to identify the best-

matching class for each image. The performance is evalu-
ated by measuring the zero-shot classification accuracy on
the original (correctly classified) ImageNet images as well
as the images of different FV methods.

1.3. Selection of Reference Images

We define our image set as the entire ImageNet training data.
Considering the computational needs, a subset of the train-
ing data could also be used. After defining our image set,
we divide our selection of 𝑟𝑒𝑓 for the two sub-problems,
(1) class visualizations and (2) intermediate neuron visual-
izations. For (1), we select 𝑁 random images for feature
distribution matching. In (2), we first select sub-regions to
identify specific concepts that neurons respond to within a
localized context. Similar to CRAFT [6], we first crop and
resize the training images into patches to obtain an auxil-
iary dataset. Then, we obtain the activations for each patch,
keeping the top-𝑁 patches while eliminating the patches
that are coming from the same original image. In the case
where the model is a CNN, the score for each patch is for-
mulated as the global average pooling of activations across
their spatial dimension.



Method Setup Acc. FID (↓) Zero-Shot Prediction
Top1 (↑) RN50 Arch. Top1 (↑) Top5 (↑)

Re
sN

et5
0

ImageNet - - - 69.11 92.23
MACO r: 224 29.43 360.74 360.74 12.87 29.73

r: 1024 2.10 494.57 494.57 1.60 5.67
Fourier r: 224 21.30 422.44 422.44 6.73 18.27

r: 1024 3.43 430.58 430.58 0.97 3.57
DeepInversion bs: 64 100.00 35.76 35.76 29.90 55.20

bs: 1 100.00 123.77 123.77 4.73 12.63
DeepInversion bs: 64 50.47 176.35 176.35 17.20 40.43

(↓ 2) bs: 1 100.00 121.94 121.94 6.30 16.43
PII bs: 21 100.00 241.54 241.54 17.53 38.93

VITAL train-set 99.90 58.79 58.79 66.62 92.56

Co
nvN

eX
tb

ase

ImageNet - - - 65.66 89.80
MACO r: 224 66.07 369.64 62.55 7.20 19.77

r: 1024 21.07 495.69 97.73 1.07 4.73
Fourier r: 224 60.07 453.91 59.60 2.77 8.30

r: 1024 14.27 529.33 77.08 0.60 2.37
PII bs: 16 100.00 405.50 92.37 1.97 6.47

VITAL 99.97 88.63 3.92 63.53 90.30

De
nse

Ne
t12

1

ImageNet - - - 70.64 93.16
MACO r: 224 9.20 418.60 1.80 9.33 23.20

r: 1024 1.60 475.39 1.98 1.43 5.03
Fourier r: 224 15.53 409.89 1.63 4.87 12.17

r: 1024 1.80 437.18 1.88 0.90 3.33
DeepInversion bs: 64 100.00 93.26 0.20 10.00 25.47
DeepInversion bs: 64 31.30 186.16 0.83 7.23 20.03(↓ 2)

PII bs: 24 100.00 377.92 1.23 11.00 24.00
VITAL 99.93 79.40 0.27 58.70 86.93

ViT
-L-

16

ImageNet - - - 64.78 89.31
MACO r: 224 44.33 371.54 946.96 3.93 10.57
Fourier r: 224 25.30 447.56 990.51 1.67 5.13

PII bs: 2 100.00 274.28 537.32 15.70 32.73
VITAL 99.80 128.02 126.29 68.17 92.80

ViT
-L-

32

ImageNet - - - 65.83 90.03
MACO r: 224 24.87 280.77 2318.90 17.53 37.23
Fourier r: 224 17.03 331.86 1983.09 10.30 28.10

PII bs: 5 100.00 270.20 293.02 38.47 67.40
VITAL 89.60 174.31 147.33 55.97 85.47

Table 1. Comparison of methods on different architectures trained on Imagenet. We provide FID scores, CLIP Zero-shot prediction scores,
and top-1 classification accuracy, indicating the best and second best. In the settings, "r" indicates the resolution of the visualization, "bs"
is the used batch size and indicate with (↓ 2) the multi-resolution optimization version of DeepInversion.

2. Additional Results
In this section, we provide more quantitative results (Tab. 1,
with various setups for methods Fourier [12], MACO [5],
DeepInversion [16], and PII [7]. Furthermore, we provide
more qualitative results for class neurons ( Figs. 11 to 18),
intermediate neurons (Figs. 20 and 21), and results on dis-
entangles polysemantic neurons (Fig. 22). Additionally, we
extend our results with the performance of intermediate neu-
rons (see Sec. 2.1), analysis of LRP on class neurons (see
Sec. 2.2), concept-level visualization (see Sec. 2.3), anal-
ysis on predictions (see Sec. 2.4), scalability across differ-

ent architectures (see Sec. 2.5), and of the failure cases (see
Sec. 2.6).
2.1. Performance on Intermediate Neurons

It is essential for us to quantify the performance of interme-
diate neuron visualization, and AUC (Area Under the Curve)
and MAD (Mean Activation Difference), as proposed in
[10], serve as valuable metrics for this purpose. In essence:
• AUC measures how well a neuron’s activation distin-

guishes between relevant and irrelevant stimuli by com-
puting the area under the Receiver Operating Charac-



Figure 2. The effect of the transparency map in the VITAL frame-
work. The first row represents the visualization without a trans-
parency map and the second row represents the visualization with
a transparency map.

Figure 3. The effects of the parameters total variation 𝛼TV and 𝓁2norm 𝛼𝓁2 on the final visualization in the VITAL framework.

teristic (ROC) curve, which plots the true positive rate
against the false positive rate at various threshold settings.
A higher AUC indicates that a neuron more effectively
captures the intended concept, demonstrating a stronger
alignment between its activations and the target represen-
tation.

• MAD quantifies the difference between the mean activa-
tion of the neuron on synthetic images and the mean ac-
tivation on control data points. A higher MAD suggests
that the neuron responds more strongly to synthetic im-
ages compared to real ones, indicating that the synthetic
stimuli successfully elicit the neuron’s preferred feature
representations.

Both metrics are essential for evaluating neuron visualiza-
tion: AUC assesses a neuron’s discriminative power, deter-

Figure 4. The effects of individual model components and their
combination on the final visualization in the VITAL framework.
Each block in the columns refers to a network component of
ResNet50 (e.g., block1:conv1, block5:layer4).

mining how selectively it activates for a given concept, while
MAD measures how strongly a neuron responds to synthetic
stimuli relative to real ones, capturing the effectiveness of
the visualization method. In Tab. 2, we present the average
results for AUC and MAD across 90 neurons. We follow
the experimental setup of [10], using a control dataset com-
posed of the top-50 real ImageNet images that most strongly
activate the target neurons, while the synthetic datasets are
generated with three different seeds per neuron. The results
demonstrate the superiority of VITAL over traditional fea-
ture visualization methods.
2.2. Analysis of Relevance on Class Neurons

For class neurons, we also experimented with incorporat-
ing relevance scores to factor out irrelevant activations. As



Method Setup AUC (↑) MAD (↑)
Fourier res: 224 0.3073 -0.8120
MACO res: 224 0.2561 -0.9678
VITAL 0.5556 0.1587

Table 2. Comparison of methods on ResNet50 trained on Imagenet
for intermediate neuron visualization through AUC and MAD met-
rics, indication the best.

for intermediate neurons, we used LRP and Guided Back-
propagation to obtain the relevance maps of each building
block for measuring their contribution to the final predicted
class 𝑐 for the given 𝑁 images. In Fig. 5, we show a com-
parison between visualizing class neurons with and without
relevance. As with intermediate neurons, incorporating fea-
ture relevance scores into activations and aligning their dis-
tributions would encourage background features in the FV
to disappear. When comparing the visualizations of "agaric"
with and without relevance, it is evident that the model fo-
cuses only on the mushroom’s cap and its spore print color
for classification. For class neurons, which encapsulate an
entire object, we as humans also consider each part of the
object to understand it (e.g., stem of a mushroom). For class
neurons, this hence involves a trade-off between enhancing
human interpretability and maintaining faithfulness to the
model’s exact reasoning mechanism, corresponding to op-
timization with and without relevance scores. An interest-
ing line of future work would be to consider LRP on self-
supervised models, which usually learn more than just one
distinguishing feature of an object. There, class visualiza-
tion involving an attribution method would make the most
sense.

2.3. Visualization of Concepts

As part of Mechanistic Interpretability, people are inter-
ested in finding concept-based explanations of model be-
havior. These concepts might be feature directions encoded
through multiple neurons in a layer, which can be, for ex-
ample, discovered by CRAFT [6]. In VITAL, we obtain
these directions as well as the images that highly activate
the concepts through CRAFT. To optimize for feature di-
rections, we modify the initialization of relevances of target
neurons in LRP to reflect the weights given by the feature
direction. Specifically, for each image’s feature map at the
penultimate layer, we compute the cosine similarity with the
concept direction vector. Then, we obtain the pixel location
of the highest cosine similarity to assign the direction vector
as the initial relevance score and apply LRP as in intermedi-
ate neuron visualization. Through this modification, VITAL
can give meaning to these feature directions. We provide
several examples for concept visualization in Figs. 23 to 26.

Figure 5. Analysis on Relevance. We performed an analysis to
examine the impact of relevance information on the visualizations
of class neurons on ResNet50. The findings highlight the effec-
tiveness of LRP and Guided Backpropagation in finding the most
significant regions for classification.

2.4. Analysis on Predictions
We further investigate the predictions of images produced
from different methods on ResNet50 and observed that other
methods including MACO seem to produce irrelevant fea-
tures that mislead the model, producing predictions unre-
lated to the original class. We give two examples of predic-
tion including the second-highest class score in Tab. 3.
2.5. Scalability Across Different Architectures
We demonstrate the scalability of VITAL by evaluating
its performance across various architectures and conduct-
ing qualitative assessments (see Figs. 13 to 18). Our re-
sults highlight the robustness of our approach, whereas other
methods fail to achieve similar adaptability and consistency



Images Tiger Maltese dog
#1 score #2 score #1 score #2 score

ImageNet Tiger Tiger cat Maltese dog Lhasa
0.8625 0.1363 0.9757 0.0149

MACO Tiger Apiary Silky terrier Coral reef
0.5752 0.1616 0.4127 0.2002

DeepInv Tiger Tiger cat Maltese dog Lhasa
0.9984 0.0013 0.9989 0.0004

VITAL Tiger Tiger cat Maltese dog Lhasa
0.8609 0.1382 0.9797 0.0112

Table 3. Comparison of top-2 softmax scores of example classes
across methods applied on ResNet50 trained on ImageNet. We use
MACO with resolution 224 and DeepInv with batch size 64 (best
setting in previous experiments) and indicate misclassification.

across different network designs. Furthermore, t-SNE pro-
jections in Fig. 9 reveal a similar trend in the embedding
space. VITAL is the only method that reliably position gen-
erated features at the center of their respective clusters, cap-
turing distinct characteristics that are recognizable.
2.6. Hardness Analysis and Failure Cases
While VITAL generally produces clearer and more concep-
tually relevant images, there are still cases where visualiza-
tion quality suffers. These negative examples highlight ar-
eas for further refinement of our framework. In Fig. 19 we
investigate these cases, including hardness of interpretation
analysis of the generated visuaizations with the help of the
aferomentioned user studies. We also offer analysis based on
our interpretations. We observe it is harder for people to in-
terpret that includes particularly complex scenes, such as the
vacuum cleaner and ambulance from ResNet50, where the
concept is less distinct. Additionally, due to the distribution-
matching loss, local details are lost, leading to unrealistic
structure in generated images—most notably seen in the Per-
sian cat visualization from ResNet50 and the husky from
ViT-L-32. Holistic user studies further indicate low con-
fidence in intermediate neuron visualizations of ResNet50
(see Fig. 19), suggesting room for improvement in this area.
Moreover, ViT-L-32 exhibits cases where certain classes,
such as scorpion and water snake, are not clearly represented
at all. These observations emphasize the need for a more
comprehensive study of ViTs, considering the effects of in-
dividual blocks, regularization strategies, and transforma-
tion processes.
3. Ablation Studies
3.1. Effects of the Building Blocks on Visualization
We performed an analysis of how different components of
a model affect the final visualization on ResNet50. As il-
lustrated in Fig. 4, when we match the feature distribution

Setup Acc. FID (↓) Zero-Shot Prediction
Top1 (↑) Top1 (↑) Top5 (↑)

Va
ry

|


ref
|

rand5 99.47 40.30 57.60 85.87
rand10 99.83 48.94 62.37 89.40
rand20 99.87 54.45 62.90 90.20
rand50 99.90 58.79 66.62 92.56
rand100 99.77 59.28 65.67 90.50

Table 4. Comparison of class-specific sampling size for the refer-
ence images on ResNet50.

of the coarser layers, the resulting visualization primarily
captures low-level information such as colors and textures,
which we refer to as the style information. As we go deeper
into the network, the visualizations progressively incorpo-
rate more contextual information such as the shape or the
structure of an object at the cost of increased high-frequency
noise. Accordingly, we observed that we can achieve a more
realistic and proper visualization result by employing all the
building blocks of our model that enable us to transfer the
style into the context.
3.2. Effect of the Regularization Losses
In Fig. 3, we examine the impact of the parameters, 𝛼TVand 𝛼𝓁2 , of the auxiliary regularization loss that are used
to further reduce noise and small artifacts in the generated
image for intermediate neuron visualization on ResNet50.
It should be noted that, in Fig. 3, we visualized the images
without a transparency map to visualize the full extent of the
impact of the regularization losses.
3.3. Effect of the Transparency Map
Irrelevant areas of the generated image stay mostly un-
changed during the optimization, essentially representing
noise. Analogous to Fel et al. [5], we suggest using trans-
parency maps based on the importance of the image loca-
tion during optimization to show relevant image parts only.
In brief, we accumulate the gradients of our loss across each
step in the optimization. As done in SmoothGrad [15], we
average those gradients through the whole optimization pro-
cess. We thus ensure the identification of the areas that have
been most attended to by the network during the generation
of the image. We illustrate the effect of the transparency
map on ResNet50 in Fig. 2.
3.4. Effect of the Reference Images
For ResNet50, we systematically varied the Xref size for
randomly selected images from a given class (see Tab. 4 and
Fig. 7), observing that VITAL remains robust and achieves
saturation around 50 samples. This suggests that our method
effectively captures the underlying feature distributions with
a relatively small reference set. However, according to our
preliminary analysis, when selecting random samples with-



Figure 6. The qualitative impact of corrupting the reference images
on class neuron visualization.

Acc. FID Zero-Shot Prediction
Top1 (↑) (↓) Top1 (↑) Top5 (↑)

Test Set 99.27 65.93 61.63 89.30
Train Set 99.90 58.79 66.62 92.56
Corrupt-5 99.97 72.73 61.03 88.80
Corrupt-10 99.83 86.73 56.20 85.50
Corrupt-20 99.93 113.30 47.30 77.40
CIFAR-10 - - 85.47 99.09
Fourier 5.97 34.87 11.40 53.80
VITAL 100.00 0.55 78.30 98.90

Table 5. The quantitative impact of corrupting the reference im-
ages, test-set analysis and CIFAR-10 analysis on class neuron vi-
sualization with ResNet50.

out considering class alignment or activation guidance, the
resulting visualizations lose coherence and fail to provide
meaningful insights, highlighting the importance of struc-
tured sampling in our approach.

Additionally, we extended our embedding analysis to fur-
ther validate the reference set strategy. As represented in
Fig. 10, we clustered all training samples from three Ima-
geNet classes into subgroups and generated representative
VITAL visualizations per cluster using 50 nearest neigh-
bor images per cluster. The resulting t-SNE plots show that
VITAL images cover diverse intra-class modes without col-
lapsing to a single mode, confirming that our approach pre-
serves both local feature fidelity and global semantic diver-
sity within the same class.

To verify that VITAL is not dependent on the training
data and the dataset that is being used, we also consider test
set examples for the reference and CIFAR-10 dataset, con-
firming that it can handle data beyond the original training
data and the ImageNet dataset (Tab. 5). Finally, we per-
formed a corruption experiment, in which we corrupted the
reference set by gradually adding 5, 10, and 20 images from

Figure 7. The effect of class-specific reference image sampling size
on class neuron visualization.

outside the class (Fig. 6 and Tab. 5). As expected, image
quality and metrics degrade progressively with increasing
contamination; however, even with partial corruption, VI-
TAL visualizations remain considerably more stable than
prior FV methods.

3.5. Alternative Attribution Methods

We extend VITAL for class neuron, intermediate neuron
and concept visualizations on ResNet50 by incorporating
Guided Backpropagation as an alternative to LRP, provid-
ing additional insights into feature attributions and model
interpretability. We provide qualitative results to compare
Guided Backpropagation with LRP for class neurons in
Fig. 5, intermediate neurons in Figs. 20 and 21, and con-
cepts in Figs. 23 to 26.



Figure 8. Demographic Analysis. We represent age and gender
distribution of the participants in our user study.

4. Human Interpretability Study
In this section, we describe the details of our user study to
quantitatively measure the performance of VITAL and dif-
ferent FV methods on human interpretability.
Participation. Participation in the study was voluntary,
with 58 individuals taking part. Among these participants
who disclosed their demographic information, 61.4% iden-
tified as male, 35.1% as female, while 3.5% selected the
option "other". Regarding age distribution within a range,
17.5% aged 18-24, 71.9% aged 25-34, and 10.5 % aged 35-
44. We provide frequency distributions of the demographics
with respect to age and gender in Fig. 8.
Study layout. The study design is described in the main pa-
per, we will here describe the layout of the three parts of the
study. We conducted the user study in Google Forms. Par-
ticipants were initially redirected to a welcome page, where
the study’s general purpose and procedures were clearly ex-
plained (see Fig. 27). Subsequently, they were presented
with the first section of our user study, where given a single
word, they evaluated how well a FV reflects the provided
word. This section contains 10 sets of words and FVs in to-
tal numbered Q1-Q10 with a simple scoring system from 1
(worst) to 5 (best) to rank the visualizations (see Fig. 28).
In the second section of our user study, users evaluated how
well the FVs for an inner neuron reflect the provided refer-
ence images (highly activating on the target neuron). This
section contains 10 sets of reference images in total num-
bered Q1-Q10 with a simple scoring system from 1 (worst)
to 5 (best) to rank the visualizations (see Fig. 29). For sec-
tion 3, participants were first asked to select one of three sub-
sets (see Fig. 30), with each subset consisting of 9 questions
from Q1-Q9 that required them to describe a given gener-
ated image with a word or a short description (see Fig. 31).
To ensure comparability of methods, in each question cor-
responding to a given target word, each subset had one spe-
cific methods’ visualization for that question. For example,

in Q1, the target class was Espresso, and subset 1 had a FV
of VITAL, subset 2 a FV of DeepInversion, and subset 3 a
FV of MACO. Finally, participants were presented with an
optional section on demographic analysis (see Fig. 32) be-
fore submitting the user study.
Analysis and Results. In Figs. 33 to 35, we provide a fine-
grained analysis of each question across all sections of our
user study complementing the results in the main paper. In
particular, we provide class- or concept-specific score dis-
tribution for each method. We observe that, as before, our
method performs favorably across all three tasks compared
to other methods for each question. Furthermore, we see that
VITAL yields consistently good results, showing better re-
sults in almost all cases across all study sections. There are
specific classes, such as specific animals, or "hamburger"
and "grand piano", where our method yields much more in-
terpretable visualizations.
Holistic User Evaluation As a complement to our proposed
user study, we conducted a validated user evaluation follow-
ing the protocol from [5, 17]. In this study, we recruited
𝑁 = 42 participants and replicated the setup using four ran-
domly selected class neurons and nine randomly selected in-
ner neurons from ResNet50. The user study is composed of
two sections, where in section 1, we incorporated four differ-
ent class neurons with 4 subset of questions, and in section
2, we incorporated 9 different intermediate neurons with
3 subset of questions. We have included a demonstration
section to enhance clarity of the study. We provide layout
snapshots from the user study in Fig. 36. We measured cor-
rectness based on participant confidence (maximum score
of 3). For class neurons, VITAL achieved 100% correctness
(2.81), outperforming MACO at 92.86% (2.51), Fourier at
90.48% (2.45), and DeepInv at 100% (2.62). Similarly, for
intermediate neurons, VITAL demonstrated superior perfor-
mance with 95.24% correctness (2.43), compared to MACO
at 88.89% (2.14) and Fourier at 87.30% (2.05). We pro-
vide fine grained analysis in Fig. 37 for both section-1 and
section-2. These results confirm that VITAL outperforms
existing feature visualization (FV) methods in supporting in-
terpretability.
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(a) ConvNext-base (b) DenseNet121

(c) ViT-L-16 (d) ViT-L-32

Figure 9. t-SNE projection of embedding. We show a low-dimensional tSNE embedding of the features at the penultimate layer for five dog
breeds indicated by color across different architectures. Transparent circles are original training images and FVs are indicated by symbols:
■: VITAL, ▴: MACO.



Figure 10. VITAL visualizations generated from clustered ImageNet training samples (3 classes shown) using 50 nearest-neighbor reference
images per cluster (10 clusters). ■: VITAL, ▴: cluster center.



Figure 11. Example class visualizations. We provide more class visualizations for different classes (columns) of ImageNet for a trained
ResNet50 model.



Figure 12. Example class visualizations. We provide more class visualizations for different classes (columns) of ImageNet for a trained
ResNet50 model.



Figure 13. Example class visualizations. We provide class visualizations for different classes (columns) of ImageNet for a trained ResNet50
model. Existing work, in particular MACO and standard Fourier-based FV (top 2 rows), show highly repetitive patterns that are hard to
understand. DeepInversion (3rd row) yields more understandable visualizations, yet suffers from artifacts that make it challenging to
interpret. VITAL arguably yields much more interpretable and realistic visualizations, yet, as all methods, has problems with complex
spatial arrangements (see the ambulance).



Figure 14. Example class visualizations. We provide more class visualizations of VITAL for different classes (rows) of ImageNet for
different models (columns).



Figure 15. Example class visualizations. We provide more class visualizations for different classes (columns) of ImageNet for a trained
VıT-L-16 model.

Figure 16. Example class visualizations. We provide more class visualizations for different classes (columns) of ImageNet for a trained
VıT-L-32 model.

Figure 17. Example class visualizations. We provide more class visualizations for different classes (columns) of ImageNet for a trained
ConvNext-base model.



Figure 18. Example class visualizations. We provide more class visualizations for different classes (columns) of ImageNet for a trained
DenseNet121 model.

(a) ResNet50 (b) ViT-L-32

Figure 19. The example failure cases in visualization quality for both ResNet50 and ViT-L-32.



Figure 20. Example intermediate neuron visualizations. We provide visualizations for four randomly selected intermediate neurons
(columns) of a trained ResNet50 model.



Figure 21. Example intermediate neuron visualizations. We provide visualizations for four randomly selected intermediate neurons
(columns) of a trained ResNet50 model.



Figure 22. Disentangling polysemanticity. We provide four example visualizations from MACO with ResNet50 that generate visualiza-
tions that strongly activate for unrelated concepts. For each example, the first column represents the MACO visualization and the second
represents the disentangled concepts from VITAL. Specifically, channel (#485) activates both on "burrito" and "dog body", channel (#909)
activates both on "mattress" and "race car", channel (#1524) activates on "submarine", "lotion" and "bulbul", channel (#1431) activates both
on "abacus" and "bell pepper ".



Figure 23. Visualizing concepts. We present example visualizations of the top five concepts identified using CRAFT for ResNet50. In this
example, for the selected class rabbit, the top five concepts are identified as "rabbit face", "rabbit ear", "rabbit fur", "grass", and "surface".



Figure 24. Visualizing concepts. We present example visualizations of the top five concepts identified using CRAFT for ResNet50. In this
example, for the selected class bear, the top five concepts are identified as "bear ear", "bear face", "bear leg", "water", and "spiky fur".



Figure 25. Visualizing concepts. We present example visualizations of the top five concepts identified using CRAFT for ResNet50. In this
example, for the selected class tabby cat, the top five concepts are identified as "cat face", "fur with stripes," "cat whisker", "brown fur",
and "white fur".



Figure 26. Visualizing concepts. We present example visualizations of the top five concepts identified using CRAFT for ResNet50. In this
example, for the selected class german shepherd, the top five concepts are identified as "dog face", "dog ear", "dog leg", "dog body", and
"grass".



Figure 27. Welcome page. A screenshot of the landing page of our user study.



Figure 28. Layout Section 1. A screenshot that shows the content of section 1, including the task received with further instructions and a
sample question.



Figure 29. Layout Section 2. A screenshot that shows the content of section 2, including the task received with further instructions and a
sample question.



Figure 30. Layout Section 3 subset selection. A screenshot of the page that requires the participants to select a seed from 3 different subsets
that determines the questions of section 3.

Figure 31. Layout Section 3. A screenshot that shows the content of section 3, including the task received with further instructions and a
sample question.



Figure 32. Layout demographic questions. A screenshot that shows the (optional) questions on age and gender.



Figure 33. The statistics on the scores for the different methods obtained for the first part of our user study, separated by class.

Figure 34. The statistics on the scores for the different methods obtained for the second part of our user study, separated by concept.



Figure 35. The violin plots with median, 5% and 95% quantiles of the achieved similarity for the last part of our user study, separated by
class.



(a) Welcome Page

(b) Section-1 (c) Section-2

Figure 36. Layout of the validated user study from [5, 17], including the welcome page and example questions from section-1 and section-2.



(a) Section-1 Summary

(b) Section-1 Class-Specific

(c) Section-2 Summary

Figure 37. The statistics on the scores for the different methods obtained for the holistic user study [5, 17].
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