Referring Expression Comprehension for Small Objects

Supplementary Material
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A. Implementation details and analysis

Model architecture. Figure 9 shows the architecture of
GroundingDINO [42], which we used as a backbone archi-
tecture in our experiments. It consists of five components:
a text encoder, an image encoder, a feature enhancer, a lan-
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Figure 9. Architecture of GroundingDINO [42, 87].
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guage guided query selection module, and a cross-modality
decoder. The BERT model is used as the text encoder. The
Swin transformer is used as the image encoder. Figure 10
shows the architecture of the feature enhancer and the de-
coder, to which we applied parameter-efficient fine-tuning
methods. Below, we describe details of each fine-tuning
method.

Full fine-tuning. Full fine-tuning uses all parameters as
learnable parameters. The number of parameters for each
component is listed in Table 8.

PIZA-CoOp. CoOp is applied to the text encoder by
prepending 16 learnable embeddings to input text prompt.
PIZA-CoOp further inserts zooming-step embeddings h be-
tween the prepended learnable embeddings and the text
prompt via learnable linear layers H. Specifically, H con-
sists of L linear layers, Hy, Hs,--- , Hr, each of which
is applied to h to obtain a sequence of embeddings whose
length is L = 8. During fine-tuning, all LayerNorm layers
are also updated. Ablation and hyperparameter studies are
shown in Table 9. Although we also tried larger values for
L, they did not lead to improved performance on the valida-
tion and Test-B sets. Overall, PIZA-CoOp did not surpass
the results achieved by PIZA-LoRA and PIZA-Adapter+.
PIZA-LoRA. We applied PIZA-LoRA to self-attention and
cross-attention layers in the feature enhancer and decoder.
Figure 11 shows the detailed architecture. For the feature
enhancer, PIZA-LoRA is applied to its text-to-image cross-
attention, image-to-text cross-attention, and self-attention
modules. For matrices to compute queries for the cross-
attention modules, the zoom-step embedding is added to
the LoRA bottleneck through a learnable matrix C'. The
vanilla LoRA is applied to the other liner functions in this
module because we observed that inserting zoom-step em-
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(a) Full fine-tuning of feature enhancer  (b) Full fine-tuning of decoder

Figure 10. Block architectures of feature enhancer and decoder.
Full fine-tuning updates all parameters.

Module Architecture ‘ #Params
Text encoder BERT 108.9M
Image encoder SwinT 27.5M
Feature enhancer | Figure 10 (a) | 21.9M
Decoder Figure 10 (b) 11.1M
Others - 3.4M
Total ‘ - ‘ 172.8M

Table 8. Number of parameters for each module.

Method ‘#Prm.‘ Val ‘ Test-A ‘ Test-B

PIZA-CoOp 0.9M [26.3/39.1/29.7|29.4/41.2/34.2[21.9/33.8/24.3
w/oemb.insertion| 0.3M (26.1/38.7/29.0(29.3/40.9/33.7|21.6/33.2/23.9
w/oPIZA module| 0.1M (20.2/36.1/20.4(24.2/40.1/25.8/15.5/29.6/14.6

L=4 0.5M [26.4/39.2/29.3(29.5/41.0/34.2|21.9/33.9/24.4
L=38 0.9M [26.3/39.1/29.7|29.4/41.2/34.2[21.9/33.8/24.3
L=16 1.7M [25.8/38.0/29.1(29.8/41.5/34.521.1/32.5/23.5

Table 9. Ablation and hyperparameter studies for PIZA-CoOp.
Train-S is used for training. Each triplet of values indicates
mAcc/Accso/Accrs.
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(a) PIZA-LoRA for feature enhancer (b) PIZA-LoRA for decoder (c) PIZA-LoRA for cross-attention (d) PIZA-LoRA for self-attention

Figure 11. PIZA-LoRA architecture.
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(a) PIZA-Adapter+ for feature enhancer (b) PIZA-Adapter+ (Type A) (c) PIZA-Adapter+ (Type B) (d) PIZA-Adapter+ for decoder

Figure 12. PIZA-Adapter+ architecture. Types A and B are designed for training with a small dataset and a large dataset, respectively.

progress value obtained from the frozen progress head of

Method ‘#Prm.‘ Val Test-A ‘ Test-B

PIZA-LoRA 1.5M [30.9/44.7/34.9|33.8/46.6/39.2|25.8/38.7/28.9
w/oemb.insertion| 1.5M (30.2/43.9/34.0(33.5/46.4/38.6|25.3/38.1/28.3
w/oPIZA module| 1.3M (21.6/38.5/21.8|26.2/43.1/28.1{17.0/32.5/15.9

T =64 5.1m (31.1/44.9/35.2|34.4/47.3/40.0|25.7/38.5/28.9
r =16 1.5M [30.9/44.7/34.9|33.8/46.6/39.2|25.8/38.7/28.9
r=4 0.6M (30.8/44.6/34.7|33.7/46.4/39.1|25.8/38.5/29.0

Table 10. Ablation and hyperparameter studies for PIZA-LoRA.
r indicates the rank of the low-rank matrices. Train-S is used for
training. Each triplet of values indicate mAcc/Accso/Accrs.

bedding did not improve the performance. For self-attention
modules, we applied PIZA-LoRA in the same way. During
fine-tuning, all LayerNorm layers are also updated. Abla-
tion and hyperparameter studies are shown in Table 10. For
PIZA-LoRA, increasing the rank to 64 slightly improved
performance but did not achieve the performance level of
PIZA-Adapter+ of Table 3.

PIZA-Adapter+. We applied PIZA-Adapter+ to the fea-
ture enhancer. As shown in Figure 12, four PIZA-Adapter+
modules are inserted into each feature enhancer block in
a post-adapter manner, i.e., adapters are inserted after the
feedforward networks and attention modules. Each PIZA-
Adapter+ module consists of either Type A in Figure 12 (b)
or Type B in Figure 12 (c). Type A leverages the zoom

the PIZA module (the module to predict an EOS label with
a progress value in Figure 5). The time embedding module
that originates from the stable diffusion [61], consisting of a
Fourier embedding and a small MLP, is then applied to the
zoom progress value. Type B omits the progress head and
uses the features extracted from the PIZA module. Com-
parison of Types A and B is shown in Table 11. Type A
is particularly effective when a small size of dataset is used
for training in experiments with Train-S. Although Type B
is seemingly more efficient than Type A, it requires more
training data than Type A because it lacks the progress head
that enlarges the variety of conditioning inputs. We also de-
signed PIZA-Adapter+ for the decoder in Figure 12 (d), but
this did not improve the performance.

PIZA-VPT. VPT [26] is applied to the image encoder by
prepending learnable embeddings to input visual prompt as
G(x,t) = F([e, x|, t), where e is a sequence of learnable
embeddings of length 16. PIZA-VPT inserts the zooming-
step embeddings h as Gg(xz,t) = F([e,H(h),x],t),
where H is the module consisting of L linear layers, similar
to PIZA-CoOp. As shown in Table 12, PIZA-VPT outper-
formed VPT. Table 13 shows ablation and hyperparameter
studies. Similar to CoOp, PIZA-VPT did not surpass the
results achieved by PIZA-LoRA and PIZA-Adapter+.

Experiments in LMMs We conducted experiments with
three large multimodal models (LMMs) that can perform



Train-S Train-L
Method #Prm. Val Test-A Test-B Val Test-A Test-B
mAcc Accso Accrs|mAcc Accso Accrs|mAcc Accso Accrs|mAcc Accso Accrs|mAcc Accso Accrs|mAcc Accso Accrs
PIZA-Adapter+ (Type A)| 3.5M | 36.8 53.5 41.8|43.1 59.6 50.1{30.4 459 34.1 {37.0 59.2 40.2|43.1 64.7 48.9(29.7 50.3 30.9
PIZA-Adapter+ (Type B)| 3.5M |35.6 51.6 40.7|41.8 58.0 48.8(28.6 43.6 32.2 {39.0 60.6 42.9|45.1 66.2 51.7|31.7 52.2 33.6
Table 11. Comparison of PIZA-Adapter+ configurations.
Train-S Train-L
Method #Prm. Val Test-A Test-B Val Test-A Test-B
mAcc Accso Accrs|mAcc Accsg Accrs|mAcc Accso Accrs|mAce Accso Accrs|mAce Accsg Accrs|mAcce Accsg Accrs
VPT 0.1M[19.8 35.3 199|239 39.2 255|154 29.6 14.3|22.5 39.8 22.6|27.2 44.5 293|174 335 164
PIZA-VPT (Ours)| 0.6M | 26.5 38.9 29.6(28.7 39.9 33.1|22.2 33.8 24.9(29.7 43.3 33.6|33.7 46.7 39.0(25.0 37.9 28.0
Table 12. Results for VPT and PIZA-VPT.
Method [#Prm.|  Val TestA |  Test-B Method LLM Val Test-A Test-B
PIZA-VPT 0.6M (26.5/38.9/29.6 28.7/@/33.1\22.2/33.8/24.9 Zero-shot Qwen2-VL-7B 0.2/0.8/0.0  0.3/1.1/0.1  0.1/0.3/0.0
w/oemb.insertion| 0.4M |25.9/37.9/29.4(28.2/39.0/32.7|21.8/32.8/24.3 Full FT Qwen2-VL-7B  1.9/6.4/0.6  2.4/7.9/0.8 1.2/4.2/0.4
w/oPIZA module| 0.1M |19.8/35.3/19.9|23.9/39.2/25.5|15.4/29.6/14.3 LoRA Qwen2-VL-7B 3.8/12.4/1.4 5.0/15.5/2.0 2.6/8.7/0.9

L=14 0.5M [25.7/37.3/28.9|27.9/38.7/32.6|21.7/32.7/24.2
L=38 0.6M |26.5/38.9/29.6|28.7/39.9/33.1\22.2/33.8/24.9
L =16 0.8M [26.0/38.0/29.6|27.8/38.5/32.1|21.7/32.8/24.3

Table 13. Ablation and hyperparameter studies for PIZA-VPT.
Train-S is used for training. Each triplet of values indicates
mAcc/Accso/Accrs.

Method ‘#Prm.‘ Val TestA TestB
Zero-shot 0 (504 57.2 432
Full fine-tuning 173M|89.2 91.9 86.0
Adapter+ 3.5M(86.9 89.6 83.3
PIZA-Adapter+(Ours)| 3.5M |87.4 90.2 84.0

Table 14. Results on RefCOCO. Each value indicates Accsg.

the REC task: Qwen2-VL-7B, InternVL-2.5-8B (nmy.x=24
for dynamic resolution), and LLaVA-NeXT-Mistral-7B. We
utilized LoRA tuning with their prompts for REC. As shown
in Table 15, our PIZA approach unlocks their abilities to
perform REC on small objects and significantly boosts the
performance. While full fine-tuning and LoRA tuning led
to slight improvements, their performance was significantly
lower compared to PIZA-LoRA.

RefCOCO. We also ran experiments on RefCOCO to
demonstrate that methodological improvements with PIZA
modules for small objects doesn’t significantly impact the
performance for objects of other sizes. RefCOCO is one
of the first dataset for referring expression comprehen-
sion [30, 53, 57, 78]. Unlike the SOREC dataset for small
objects, RefCOCO concentrates on referring expressions
for objects that occupy a relatively large portion of the im-
ages in MS-COCO [39]. RefCOCO became a commonly-

Zero-shot InternVL2.5-8B  0.0/0.0/0.0  0.0/0.1/0.0  0.0/0.0/0.0
Full FT InternVL2.5-8B  0.1/0.5/0.0  0.1/0.5/0.0  0.1/0.5/0.0
LoRA InternVL2.5-8B  0.2/0.8/0.0  0.2/0.8/0.1  0.2/0.8/0.0
PIZA-LoRA InternVL2.5-8B 20.7/47.5/19.2 25.4/55.4/24.5 16.7/40.2/13.9
Zero-shot LLaVA-NeXT-7B  0.0/0.0/0.0  0.0/0.0/0.0  0.0/0.0/0.0
Full FT  LLaVA-NeXT-7B 0.1/0.3/0.0  0.1/0.2/0.0  0.1/0.2/0.0
LoRA LLaVA-NeXT-7B 0.7/2.7/0.1  0.7/2.5/0.1  0.6/2.2/0.2

PIZA-LoRALLaVA-NeXT-7B 10.8/27.7/6.3 12.0/30.4/7.2 8.7/23.1/5.0

Table 15. Experiments with LLMs on SOREC (Train-L).
LoRA rank is set to 128. [Each triplet of values indicates
mAcc/Accso/Accrs.

used benchmark of the referring expression comprehension
task for a long time. As shown in Table 14, our PIZA-
Adapter+ doesn’t greatly decrease the accuracy on Ref-
COCO. PIZA-Adapter+ outperforms Adapter+ because the
small learnable PIZA module helps improve the perfor-
mance in RefCOCO. For larger objects, the [EOS] token
was predicted after the first inference step.

Extended training dataset. The extended training dataset
& consists of ground truth search processes P*. The aver-
age length of P* was 2.11, indicating that, in most cases,
two zooming steps are sufficient to localize objects in the
SOREC dataset via fine-tuning with PIZA. The hyperpa-
rameters \j, A2 of the weighting function were optimized
for each target bounding box to ensure that the minimum
size of the input image is larger than 450 pixels, as we em-
pirically found that including smaller cropped images de-
grades the performance. Specifically, the parameters are
first set to A\; = 1.0 and Ao = 1.0, and then if the edge
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The illuminated orange hand signal is located above the green | The circular red sign with a white border is located just below the | The white car is driving on the highway, positioned behind a black car
chain- link fence to the left of the red traffic light. directional sign and to the right of the advertisement with bottles. on its left and a white car further ahead on the same lane.

b, : Predicted bounding boxes

: Ground truth bounding boxes

Figure 13. Failure cases.
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Ground truth
The traffic light, which is positioned in front of the building and near the trees, displays a red signal
at the top with a white car in the foreground on the right.

Figure 14. Qualitative examples.

length of the second-to-last bounding box is smaller than
450 pixels, we resample the search process by multiply-
ing Ao by 1.1, iteratively until the edge length exceeds the
threshold.

Error analysis. We analyzed failure cases, as shown in
Figure 13. The results indicate that localizing objects oc-
cluded by other objects or placed in close proximity to sim-
ilar objects remains challenging. Creating datasets with 8K
or higher resolution images, which may require additional
steps, is also left for future work.

Qualitative examples. Figures 14 to 19 show qualita-
tive examples. The predicted bounding boxes, 131, 52, and
Bg, are colored in blue, red, and orange, respectively, in
each figure. The final predictions, BT’ where T = 2 or
3, are compared with the ground truth bounding boxes in

green. As shown, our method successfully localizes ex-
tremely small target objects.



The triangular sign with a red border and white background, depicting two children crossing, is
mounted on a white pole above a circular sign with a blue background above a white car.
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und truth

The white security camera is mounted on a horizontal white pole, with black branches and a clear
blue sky in the background.

Figure 15. Qualitative examples.
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The sign with a blue "P" is located above the bicycle symbol and below the no parking sign
mounted on a gray pole.

The person wearing a gray outfit and riding a bicycle with a white seat is positioned between a
person in a gray jacket and a person in a black jacket, near a street sign and a pole.

Figure 16. Qualitative examples.



The object with diagonal red and white stripes is positioned near a green hedge and is in front of a
similar striped object and a triangular road sign in the background.

The bicycle is mounted by a person wearing a pink shirt is positioned behind the black and white
striped pole.

Figure 17. Qualitative examples.



The car in the background with its brake lights illuminated is positioned ahead of the black vehicle
with red taillights, near the flower bed and palm trees.

The circular sign with a white background and a red border displaying the number "30" in black is
positioned below a black and white arrow sign and to the right of a blue parking sign with a white "P".

Figure 18. Qualitative examples.
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Ground truth

The white pedestrian crossing signal is mounted on a yellow box, positioned above a blurry
background with dark and light elements.

heo

The white truck is parked on the street between two buildings, with another truck visible further
down the street with the backdrop of a mountain.

Figure 19. Qualitative examples.
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