
Supplementary Material for Sibai: A Few-Shot Meta-Classifier for Poisoning
Detection in Federated Learning

A. Federated Averaging
In a federation comprising multiple clients, denoted as Ck ∈
{C1, ...CN}, the server selects a subset Ci ∈ {C1, ...Cn}
of size n from the N available clients. Each chosen client
initializes its local model with the distributed global model
(Lr

i = Gr) before training a new local model Lr+1
i using

its local dataset Di. The disparity between this local model
and the global model is termed the update, denoted as Ur

i =
Lr+1
i −Gr. In the application of the FedAVG algorithm, the

server aggregates these updates by computing the weighted
average of all updates, utilizing the global learning rate δ as
expressed in Equation (1).

Gr+1 = Gr + δ

(
1

n

n−1∑
i=0

Ur
i

)
(1)

B. Model Accuracies
For a benign test set Dtest consisting of samples with cor-
rectly labeled predictions y, we evaluate the prediction per-
formance of a model, referred to as the model accuracy (MA).
As expressed in Equation (2), the MA is determined as the
fraction of samples d in Dtest that the new global model
Gr+1 correctly classifies, divided by the total size of Dtest,

MA =
|(d, y) ∈ Dtest : f(d,G

r+1) = y|
|Dtest|

(2)

In the assessment of a model’s prediction performance
for a backdoor task, an adversary A, controlling one or more
clients (Ci) within the federation (AC ⊆ C1, ...CN ), aims
to submit manipulated local models to the server. The goal
is to influence the aggregated model Gr+1 to produce a
predefined target prediction p when presented with an in-
put sample dT containing the attacker-designated trigger T .
Both the target label p and the trigger T are freely chosen by
the attacker. The success of a backdoor attack is measured
by the global model’s prediction performance on triggered
inputs, quantified as the backdoor accuracy (BA). As indi-
cated in Equation (3), the BA is the fraction of triggered
input samples dT in a malicious test set DT

test, which exclu-
sively contains such samples, relative to the total size of the
malicious test set DT

test,

BA =
|(dT , P ) ∈ DT

test : f(d
T , Gr+1) = P |

|DT
test|

(3)

C. Implementation
This section provides an in-depth look into our implementa-
tion of Sibai, focusing on key aspects and challenges encoun-
tered during development. As aforementioned, a primary
concern was efficiently managing the substantial input size,
since keeping multiple shadow models concurrently in GPU
memory can be difficult because of their substantial size. The
detailed architectures of the twin networks and the decision
network are listed in Appendix C.4. Our implementations
used PyTorch [13], a popular Python [15] machine learning
library.

C.1. Training Strategy
To ensure stability both networks undergo training individ-
ually. The Siamese network is trained first using the triplet
loss method. Each epoch employs all global models as an-
chors, with positives and negatives randomly selected from
available local models. This approach effectively increases
the distance between benign and malicious samples, align-
ing with Sibai’s goals. Once the Siamese network stabilizes,
training for the decision network begins. It utilizes the binary
cross entropy (BCE) loss [5], the standard loss function for
binary classifiers with a Sigmoid output layer.

C.2. Dimensionality Reduction and Feature Engi-
neering

Our PCA-based feature reduction operates in two phases.
Initially, before training begins, a PCA decomposition is
pre-computed for each slice individually in a process called
fitting, and the results are stored for subsequent use. As illus-
trated in Fig. 1, when processing a model with the Siamese
network, the pre-computed PCA decomposition is applied to
each slice, and Euclidean and cosine distances to the respec-
tive slice of the global model are calculated. The resulting
slice vectors are concatenated to generate a unified flat rep-
resentation. The PCA decomposition retains a fixed number
of principal components, which means it preserves all infor-
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Figure 1. Application of the PCA pipeline to a local model. The
dicing process is applied to each slice individually, using a slice-
specific PCA decomposition (in this example for slice c) that was
fitted before the training started.

mation for slices with fewer parameters than that number of
components.

C.3. Shadow Model Dataset
We employed our custom FL simulation framework to gener-
ate shadow models for our dataset. Each federation consisted
of 20 models: 11 benign and 9 malicious, poisoned with one
of five backdoors detailed in Sect. D. To ensure uniqueness,
each federation had a distinct seed and dataset split. Fed-
erations were divided into a training set, used for Sibai’s
training, and a test set for performance metrics. However,
that test set was not used in our experiments; instead, Sibai
was integrated into the FL framework as a DF-based defense
and applied before aggregation in entirely new federations,
distinct from both training and test sets.

C.4. Model Architecture
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Figure 2. Model Architecture of Sibai: Siamese twin networks
followed by a small fully connected decision network

This section elaborates on the detailed architectures of the
Siamese networks of Sibai used throughout this paper. At

the core of Sibai lies the twin conventional neural networks
designed to learn feature representations that effectively max-
imize the distances between benign and poisoned models.
As shown in Fig. 2 the structure of each of the twins unfolds
as follows: Beginning with a linear layer, the model com-
presses the dimensions of the input vector. Subsequently, a
sequence of five 1-dimensional convolutional layers follows,
gradually increasing the number of filters from 64 up to
1024. As the layers progress, the kernel size decreases from
5 to 3, facilitating more nuanced computations. A critical
down-sampling step follows through one-dimensional max
pooling with a spatial window of 4, ensuring the retention
of crucial features. The process continues with another con-
volutional layer that reduces the number of filters back to
64. This is complemented by a second max pooling layer,
filtering out more irrelevant features. The output is then flat-
tened and subjected to a dropout layer to prevent overfitting.
To address the issue of large flattened vectors, a sequence
of three linear layers progressively reduces the length to
a fixed size of 512 elements. The Siamese network takes
two local models as input and guides each through the twin
convolutional networks. Afterward, the L2-distance of the
two resulting 512-element long feature vectors is computed
and then handed to the compact decision network. This net-
work is tasked to learn a distance threshold at which one
of the models should be flagged as potentially malicious.
As shown in Fig. 2 the architecture of this network consists
of four linear layers: Initially, the first two layers work in
tandem, expanding the input distance vector to encompass
64 and 128 features, respectively. The third layer reduces the
feature vector to a compact 32-dimensional representation.
To ensure effective generalization, a dropout layer is applied.
The final linear layer then brings the representation down
to a single feature. A Sigmoid [12] activation function is
employed at this stage to produce an output from 0 to 1.
This output signifies the probability that one of the models
is potentially malicious.

D. Poisoning Methods
In this section, we explain the backdoor trigger methods,
that malicious clients can leverage to poison the local mod-
els. In our evaluation we use pixel triggers [7], semantic
backdoor [1], edge case backdoor [16], and the pervasive
backdoor, also known as blend backdoor [4]. Additionally,
we employ one untargeted attack in the form of random label
flipping [8].

D.0.1. Pixel Trigger Backdoor
The pixel trigger backdoor [7] is a well-established image
classification-specific attack. During model training, a pixel
pattern is added to benign input images which are then la-
beled with an attacker-chosen label. The model associates
the pixel pattern with the attacker label, learning to disre-



Figure 3. Visualization of the pixel trigger backdoor [7] on an
example from the CIFAR-10 [9] dataset. The color of the pixel
patch is the maximal RGB color of the image. (a) shows a benign
sample and (b) shows a malicious one with the embedded trigger

gard the underlying image in the presence of the trigger.
During inference, when the trigger is added to any arbitrary
input image, the model focuses on it and classifies the image
as the attacker-chosen target label, regardless of the actual
underlying image. Fig. 3 depicts an example of the pixel
triggers used throughout this paper. The color, value, and
location of the pixel trigger significantly impact the BA. For
color selection, we opt for the maximum color of the first
image seen by any adversary and broadcast this color to
other adversarial clients. This choice makes the color less
conspicuous and challenging for defenders to detect. The
trigger has a quadratic shape, with a size of 1

16 of the sample
width, positioned in the upper left corner of the image.

D.0.2. Blend Backdoor
The pixel trigger backdoor has a significant drawback: ma-
licious input images are easily recognizable as poisoned by
any human observer. To address this issue, the blend back-
door [4] conceals the trigger throughout the entire image, by
overlaying a layer of seemingly random noise onto it. At low
intensity, this noise may be invisible to humans, yet it still
alters the DNN’s perception which has learned to associate
these noise patterns with the attacker’s target label, leading
to misclassifications. Examples of a poisoned sample can be
seen in Fig. 4

Figure 4. Visualization of the blend backdoor [4] on an example
from the CIFAR-10 [9] dataset. The trigger is a pattern of seemingly
random noise overlayed on the image. (a) shows a benign sample
and (b) shows a malicious one with the noise pattern overlayed at
10% opacity

D.0.3. Edge Case Backdoor
An edge-case backdoor [16] specifically targets inputs lo-
cated at the tail of the input distribution. These inputs are
commonly prone to confusion by the model. Unlike other
attacks this backdoor does not incorporate an additional trig-
ger, instead, it simply involves identifying and deliberately
mislabeling the specific edge case specific samples in the
adversary’s dataset. Consequently, the likelihood of acci-
dentally triggering the backdoor is higher, however, due to
the inherent difficulty of correctly classifying these sam-
ples, the model’s misclassifications may appear as honest
mistakes. It’s noteworthy that even on a completely benign
model, the BA for this attack might seem somewhat high,
especially when compared with those of other attacks, given
that the misclassifications are somewhat natural and simply
get artificially amplified by the adversary. We implemented
CIFAR-10 [9] version of this backdoor attack, deliberately
mislabeling images of airplanes from the Southwest airline
as trucks. An example of such images can be seen in Fig. 5

D.0.4. Semantic Backdoor
In the semantic backdoor attack [1], attackers intentionally
mislabel benign images containing specific characteristics.



Figure 5. Samples from the CIFAR-10 [9] dataset used for the
edge-case backdoor [16]. The blue airplanes of Southwest airline
are on the tail end of the distribution for the airplane class, and
therefore an adversary deliberately mislabeled them as trucks

Therefore, similar to the edge case backdoor [16], the seman-
tic backdoor causes the model to produce an attacker-chosen
output on completely unmodified inputs. For instance, in an
image classification model, the attacker assigns a chosen la-
bel to all images with certain features, such as misclassifying
all cars in front of a striped background. Similar to the blend
backdoor, is exceptionally difficult for humans to detect that
an image contains a semantic backdoor simply be observing
it, especially considering that the trigger may encompass a
varied set of arbitrarily complex image characteristics. Fig. 6
illustrates a semantic backdoor on CIFAR-10 [9], which we
utilize in our experiments. To ensure the uniqueness of the
trigger, samples containing it are excluded from the training
datasets of benign FL clients.

Figure 6. Visualisation of a semantic backdoor [1] with samples
from the CIFAR-10 [9] dataset with cars in front of a striped back-
ground as a trigger. (a) is an example of a benign car sample
without the trigger, while (b) and (c) contain the combination of
car and striped background that triggers the misclassification.

D.0.5. Random Label Flipping
Unlike targeted attacks, which aim to induce misclassifica-
tions in very specific cases that are unlikely to be triggered
by accident, untargeted attacks are less covert. They focus on
degrading the model’s overall performance, introducing ar-
bitrary misclassification, and generally hindering its correct
functioning. Random Label Flipping [8] is a direct method
for executing untargeted attacks, achieved by assigning ran-
dom incorrect labels to benign samples. This causes the
model to generate high loss values for correct classifications,
leading to a process of unlearning. While this type of attack
might be noticeable to federation operators due to a reduced



MA, it still holds the potential to cause significant damage.
In the best cases, it may necessitate a model rollback to a
previous checkpoint, resulting in time and potential financial
losses. In the worst-case scenario, a successful untargeted
poisoning attack might require a complete reset of the train-
ing process.

E. Evaluation Hyperparameters

This section outlines the hyperparameters for the defenses
Sibai was compared in our evaluations, aiming to offer a
comprehensive overview of our experimental setup. In the
case of trimmed mean [17], we trim the upper and lower 5%
to mitigate the outliers. The threshold for both Krum and
M-Krum [2] is set to 0.7 and the rate of clients considered
for M-Krum is 0.3. For FLTrust [3], a sizable root dataset
containing 200 elements was utilized.

F. F1 Score Calculations for Reference Defenses

Calculating F1 scores for all reference poisoning defenses
posed challenges, especially for IR-based methods that rely
on modified aggregation rather than strictly flagging and
filtering out malicious models. For instance, FoolsGold [6]
utilizes a weighted aggregation system, making it unsuitable
for explicit classification of models as malicious or benign.
The same applies to Trimmed mean [17] and trimmed me-
dian [17] which replace FedAVG [11] with their own robust
aggregation algorithms designed to diminish the influence of
poisoning. DF-based methods like Krum [2], M-Krum [2],
HDBSCAN [10], and MESAS [8] directly identify and re-
move malicious models, allowing direct calculations of pre-
cision, recall and F1 score. However, FLTrust [3] also adopts
a weighted aggregation system, assigning weights based on
cosine and Euclidean distances to a benign reference model,
which is trained server-side on a small trusted dataset. How-
ever, in our experiments, we observed that the malicious
models usually get assigned exceedingly low weights by
FLTrust, which make them effectively have no tangible im-
pact on the aggregated global model. We, therefore, calculate
FLTrust’s F1 score using a 0.09 weight threshold, designat-
ing models below it as effectively filtered. This threshold
stems from observations where overtly malicious models,
recognized by most defenses, received weights of 0.08 or
below. Note that using a different threshold would alter
FLTrust’s F1 scores, but it wound not affect its MA and BA
performance.

G. Additional Evaluation

This section provides evaluation results that were omitted
from the main paper for space reasons.

q Scenario Random Pixel Blend Edge Semantic

0.3

A

PDR 0.5 0.5 0.5 0.5 0.5
Precision 1.0000 1.0000 1.0000 1.0000 1.0000
Recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000
MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 3.52% 0.0% 13.77% 0.0%

B

PDR 0.4 0.08 0.04 0.16 0.04
Precision 1.0000 1.0000 1.0000 1.0000 1.0000
Recall 1.0000 1.0000 1.0000 1.0000 0.8888
F1 1.0000 1.0000 1.0000 1.0000 0.9411
MA diff. 0.0% 0.0% 0.0% 0.0% +1.34%
BA - 2.65% 0.20% 8.67% 0.0%

A = Default + 0.3 1-class non-i.i.d. + high PDR

B = Default + 0.3 1-class non-i.i.d. + low PDR

Table 1. Detection performance of Sibai in 1-class non-i.i.d. sce-
narios, with different level of disproportionality q

G.1. 0.3 1-Class non-i.i.d.
In scenarios A and B , shown in Tab. 1, a 1-class non-
i.i.d. disproportionality level q of 0.3 was employed. Sibai
achieved perfect detection with F1 scores of 1.0 in the 0.5
PDR scenario A and exhibited perfect precision in the low

PDR scenario B , with no false positives. There was one
false negative for the semantic backdoor, however, the global
model’s BA remained at 0.

G.2. Runtime Evaluation

Defense Runtime

MESAS [8] 37.25s
Krum [2] 5.61s
M-Krum [2] 5.70s
FoolsGold [6] 0.17s
HDBSCAN [10] 0.18s
trimmed mean [17] 0.61s
trimmed median [17] 0.03s
FLTrust [3] 25.8s
Auror [14] 12 hours
Sibai (ours) 5.27s

Table 2. Runtime of defenses in seconds during the aggregation
process

This section assesses the runtime performance of Sibai.
The offline training phase took 23 hours and 40 minutes,
with each epoch lasting about half an hour. Despite this
initial investment, given the large-scale nature of FL and the
advantages of Sibai, such as robust defense against adaptive
attacks, this one-time effort before launching the federa-
tion is generally acceptable. During the online inference
phase, Sibai demonstrates a reasonably average performance
impact. As shown in Tab. 2, in scenario 0 , Sibai’s run-
time, including PCA decomposition and Siamese network
inference for all 20 models, is 5.27 seconds. This aligns
with other recent defenses like Krum and M-Krumm [2].



Naı̈ve cosine-distance based HDBSCAN [10] and robust
aggregation methods such as trimmed mean, median [17]
show minimal impact (less than one second) but also exhibit
inferior detection performance compared to Sibai. The Au-
ror [14] method introduces extreme performance overhead
and was excluded from other experiments in our evaluation.

G.3. Alpha Parameter for Adaptive Adversaries

In this section, we present an overview of experiments test-
ing Sibai against adaptive adversaries, providing results for
experiments conducted against attackers employing different
levels of adaptation. These attackers utilize the method intro-
duced by Bagdasaryan et al. [1], adjusting the α parameter
to balance the trade-off between optimizing BA and stealthi-
ness. Our experiments cover a range of alpha values from
0.1 to 0.9 and maintain a consistent seed across all experi-
ments to mitigate the impact of ML-related randomness on
the results.

The results in Tab. 3 show the results of experiments
involving an attacker utilizing both high PDR and cosine
distance adaptation. Sibai demonstrates robust detection for
all α values, reliably identifying all malicious models.

In Tab. 4 an attacker employs cosine distance adaptation
alongside low PDR values. False negatives occur only at very
high levels of adaptation (α values of 0.8 and 0.9), however,
at this point, the malicious local models are so focused on
adaptation that they fail to effectively introduce a backdoor,
resulting in minimal impact on MA and very low BA values.

The outcomes for the adversary employing Euclidean
adaptation and high PDR in Tab. 5 closely mirror the high
PDR cosine adaptation experiment results in Tab. 3. Sibai
consistently identifies all malicious models, regardless of the
α value employed by the attacker.

The scenario involving Euclidean adaptation and low
PDRs appears to be the most challenging for Sibai among
all adaptive attacker scenarios. For high α values (0.7 to
0.9), Sibai easily identifies all malicious models, possibly
because their strong focus on adaptation amplifies the indica-
tors of poisoning that Sibai has learned to detect. However,
for balanced α values (0.2 to 0.5), Sibai exhibits some false
negatives, particularly for the pixel and blend backdoors.
Despite these instances, the BA remains extremely low, in-
dicating that no effective backdoor was introduced. The
impact on model accuracy MA was also minimal; for in-
stance, in the worst case, there were 3 false negatives for the
pixel trigger backdoor with an α of 0.5, reducing the MA
by 9.27%. These experiments suggest that Sibai is resilient
against adaptive adversaries targeting cosine and Euclidean
distance. Generally, an α between 0.2 and 0.5 has the most
impact, although this impact is still very limited. We, there-
fore, chose to showcase the results for an α of 0.3 in the
main paper.

H. Shadow Model Dataset Composition
Table 7 provides a detailed breakdown of the composition
of the shadow model dataset used to train the Siamese net-
work that was evaluated in the experiments showcased in
the main paper. Initially, each federation trained 11 benign
and 9 malicious models. However, malicious models with a
local BA below 45% were subsequently removed from the
dataset. This exclusion was necessary because such models
exhibit backdoors that are too inefficient to effectively mani-
fest the typical characteristics of poisoned models. Moreover,
detecting such models is somewhat futile because of their
weak local poisoning, they are very unlikely to introduce
any significant backdoor to the global model when aggregat-
ing. Therefore, removing them improves the quality of the
classifier.



α Metrics Random [8] Pixel [7] Blend [4] Edge [16] Semantic [1]

0.1

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.2

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.3

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.4

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.5

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.6

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.7

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.8

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.9

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

Table 3. Detection performance of Sibai against attackers using
cosine distance adaptation with different α levels and high PDR

α Metrics Random [8] Pixel [7] Blend [4] Edge [16] Semantic [1]

0.1

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

0.2

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

0.3

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

0.4

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

0.5

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

0.6

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

0.7

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

0.8

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 0.8888 0.8888 0.8888
F1 1.0000 1.0000 0.9411 0.9411 0.9411

MA diff. 0.0% 0.0% -0.95% -1.46% +2.59%
BA - 1.08% 0.18% 19.38% 0.0%

0.9

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 0.7777 1.0000 0.6666 1.0000 1.0000
F1 0.8750 1.0000 0.8000 1.0000 1.0000

MA diff. -1.27% 0.0% +1.83% 0.0% 0.0%
BA - 1.08% 0.72% 18.87% 0.0%

Table 4. Detection performance of Sibai against attackers using
cosine distance adaptation with different α levels and low PDR



α Metrics Random [8] Pixel [7] Blend [4] Edge [16] Semantic [1]

0.1

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.2

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.2% 18.87% 0.0%

0.3

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.4

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.5

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.6

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.7

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.8

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

0.9

PDR 0.5 0.5 0.5 0.5 0.5
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.20% 18.87% 0.0%

Table 5. Detection performance of Sibai against attackers using
Euclidean distance adaptation with different α levels and high PDR

α Metrics Random [8] Pixel [7] Blend [4] Edge [16] Semantic [1]

0.1

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 0.7777 1.0000 1.0000 1.0000
F1 1.0000 0.8750 1.0000 1.0000 1.0000

MA diff. 0.0% -1.1% 0.0% 0.0% 0.0%
BA - 1.34% 0.14% 18.87% 0.0%

0.2

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 0.8888 0.7777 1.0000 0.8888
F1 1.0000 0.9411 0.8750 1.0000 0.9411

MA diff. 0.0% +2.09% -6.02% 0.0% -6.42%
BA - 2.05% 0.27% 18.87% 0.0%

0.3

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 0.8888 0.8888 1.0000 1.0000
F1 1.0000 0.9411 0.9411 1.0000 1.0000

MA diff. 0.0% +3.1% -6.3% 0.0% 0.0%
BA - 5.98% 0.0% 18.87% 0.0%

0.4

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 0.8888 1.0000 1.0000 1.0000
F1 1.0000 0.9411 1.0000 1.0000 1.0000

MA diff. 0.0% +1.05% 0.0% 0.0% 0.0%
BA - 0.0% 0.07% 18.87% 0.0%

0.5

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 0.7777 0.8888 1.0000 1.0000
F1 1.0000 0.8750 0.9411 1.0000 1.0000

MA diff. 0.0% -9.27% -7.86% 0.0% 0.0%
BA - 0.11% 0.0% 18.87% 0.0%

0.6

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 0.8888 1.0000 1.0000
F1 1.0000 1.0000 0.9411 1.0000 1.0000

MA diff. 0.0% 0.0% -8.36% 0.0% 0.0%
BA - 1.08% 0.03% 18.87% 0.0%

0.7

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 0.8888 1.0000 1.0000
F1 1.0000 1.0000 0.9411 1.0000 1.0000

MA diff. 0.0% 0.0% -8.01% 0.0% 0.0%
BA - 1.08% 0.05% 18.87% 0.0%

0.8

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

0.9

PDR 0.4 0.08 0.04 0.16 0.04
precision 1.0000 1.0000 1.0000 1.0000 1.0000

recall 1.0000 1.0000 1.0000 1.0000 1.0000
F1 1.0000 1.0000 1.0000 1.0000 1.0000

MA diff. 0.0% 0.0% 0.0% 0.0% 0.0%
BA - 1.08% 0.14% 18.87% 0.0%

Table 6. Detection performance of Sibai against attackers using
Euclidean distance adaptation with different α levels and low PDR



Attack PDR i.i.d./non-i.i.d.-ness Adv. Adaptation # Federations # Benign Models # Malicious Models

Blend [4]

0.02 i.i.d. none 8 88 72
0.04 i.i.d. none 8 88 63
0.08 i.i.d. none 8 88 72
0.5 i.i.d. none 1 11 9
0.8 i.i.d. none 2 22 18
0.02 0.3 1-class none 8 88 68
0.02 0.6 1-class none 8 88 59
0.02 0.9 1-class none 8 88 54
0.04 0.3 1-class none 7 77 62
0.04 0.6 1-class none 7 77 57
0.04 0.9 1-class none 7 77 60
0.5 0.9 1-class none 2 22 18
0.8 0.9 1-class none 1 11 9
0.9 0.9 1-class none 1 11 9
0.04 inter-client none 7 77 52
0.5 inter-client none 7 77 61
0.4 i.i.d. cosine α = 0.3 8 88 72
0.4 i.i.d. Euclid α = 0.3 8 88 66
0.5 i.i.d. cosine α = 0.3 7 77 63
0.5 i.i.d. Euclid α = 0.3 7 77 58

Edge [16]

0.08 i.i.d. none 5 55 13
0.16 i.i.d. none 7 77 30
0.2 i.i.d. none 4 44 27
0.4 i.i.d. none 1 11 9
0.6 i.i.d. none 1 11 9
0.8 i.i.d. none 1 11 9
0.9 i.i.d. none 1 11 9
0.08 0.9 1-class none 8 88 34
0.16 0.3 1-class none 7 77 37
0.16 0.6 1-class none 7 77 41
0.16 0.9 1-class none 7 77 35
0.18 0.3 1-class none 8 88 49
0.18 0.6 1-class none 8 88 53
0.18 0.9 1-class none 8 88 46
0.5 0.9 1-class none 2 22 18
0.8 0.9 1-class none 1 11 9
0.9 0.9 1-class none 1 11 9
0.16 inter-client none 7 77 48
0.5 inter-client none 7 77 60
0.4 i.i.d. cosine α = 0.3 9 99 81
0.4 i.i.d. Euclid α = 0.3 8 88 39
0.5 i.i.d. cosine α = 0.3 8 88 72
0.5 i.i.d. Euclid α = 0.3 7 77 50

Pixel [7]

0.04 i.i.d. none 6 66 36
0.05 i.i.d. none 1 11 3
0.1 i.i.d. none 1 11 9
0.04 0.3 1-class none 3 33 20
0.04 0.6 1-class none 8 88 46
0.04 0.9 1-class none 8 88 33
0.08 0.3 1-class none 7 77 48
0.08 0.6 1-class none 3 33 23
0.08 0.9 1-class none 7 77 42
0.5 0.9 1-class none 2 22 18
0.8 0.9 1-class none 1 11 9
0.9 0.9 1-class none 1 11 9
0.08 inter-client none 7 77 52
0.5 inter-client none 7 77 63
0.4 i.i.d. cosine α = 0.3 8 88 72
0.4 i.i.d. Euclid α = 0.3 8 88 72
0.5 i.i.d. cosine α = 0.3 7 77 63
0.5 i.i.d. Euclid α = 0.3 7 77 63

Semantic [1]

0.02 i.i.d. none 6 66 53
0.05 i.i.d. none 1 11 9
0.08 i.i.d. none 1 11 9
0.02 0.3 1-class none 8 88 72
0.02 0.6 1-class none 8 88 68
0.02 0.9 1-class none 8 88 61
0.5 0.9 1-class none 2 22 9
0.8 0.9 1-class none 1 11 9
0.9 0.9 1-class none 1 11 9
0.04 0.3 1-class none 7 77 63
0.04 0.6 1-class none 7 77 61
0.04 0.9 1-class none 7 77 59
0.04 inter-client none 7 77 59
0.5 inter-client none 7 77 54
0.4 i.i.d. cosine α = 0.3 8 88 72
0.4 i.i.d. Euclid α = 0.3 8 88 71
0.5 i.i.d. cosine α = 0.3 7 77 63
0.5 i.i.d. Euclid α = 0.3 7 77 63

Random [8]

0.4 i.i.d. none 1 11 9
0.5 i.i.d. none 2 22 18
0.8 i.i.d. none 1 11 9
0.2 i.i.d. none 8 88 72
0.2 0.3 1-class none 8 88 72
0.2 0.6 1-class none 8 88 72
0.2 0.9 1-class none 8 88 72
0.4 0.3 1-class none 3 33 27
0.4 0.6 1-class none 7 77 63
0.4 0.9 1-class none 7 77 63
0.8 inter-client none 7 77 63
0.4 i.i.d. cosine α = 0.3 8 88 72
0.4 i.i.d. Euclid α = 0.3 8 88 72
0.5 i.i.d. cosine α = 0.3 7 77 63
0.5 i.i.d. Euclid α = 0.3 7 77 63

Sum 520 5720 4145

Table 7. Detailed breakdown of the shadow model dataset composition used to train Sibai
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