
Knowledge-Guided Part Segmentation

Supplementary Material

In the following, we provide more details in Section A.
We further provide additional experimental results and ab-
lation study in Section B. Finally, we present qualitative re-
sults for the benchmarks in Section C.

A. More Details
A.1. Coarse-grained Perception Module
The Coarse-grained Perception Module, shown in Figure 7,
is tailored to capture object-level contextual cues, specif-
ically for segmenting larger objects in the scene. This
module alternates between Swin Transformer blocks and
Text Transformer blocks to iteratively refine the visual and
text features. The Swin Transformer blocks apply local
and shifted self-attention mechanisms, allowing the model
to capture spatial relationships across object-level regions,
enhancing the detail of more significant segments. The
Text Transformer blocks refine these features by focusing
on object-level text embeddings, supporting more robust
coarse-grained differentiation between distinct objects. The
outputs pass through a Conv Decoder with upsampling lay-
ers to complete the process, producing a high-resolution
object-level segmentation output. This structure enables the
module to effectively segment objects by leveraging visual
structure and coarse-grained object representations.

gt

g0 g0

W-MSA

MLP

LN

LN

SW-MSA

MLP

LN

LN

Up

DouConv

Up

DouConv

g1 g2

��
g0

Swin Transformer Block

Text Transformer Block

Swin Transformer Block

Text Transformer Block

Output

Conv_decoder
Conv_decoder

��
 ,

g0

gt

g1  g2 

Overview

Pooling

Norm

Multi-Head
Attention

Norm

MLP

Linear

bilinear

gt

Swin Transformer Block Text Transformer Block

Conv_decoder×2

��
 ,,

��
 ,

��
 ,,

CC

C

C C

Figure 7. The Coarse-grained Perception Module focuses on seg-
menting larger objects. The terms g1 and g2 represent features ex-
tracted from the 3rd and 7th layers of the CLIP model (ViT-B/16).

A.2. Mask Encoder
This encoder is designed to capture high-level, abstract fea-
tures by progressively reducing the spatial dimensions of
the input through a series of convolutional operations. The

mask encoder processes coarse-grained, object-level class
probability maps, refining them to serve as targeted guid-
ance for fine-grained segmentation. It consists of convolu-
tional layers, each followed by a ReLU activation function,
introducing non-linearity to enable the model to capture in-
tricate spatial patterns. Following the convolutional layers,
max pooling operations downsample the feature maps, re-
ducing spatial dimensions while retaining essential features.
Finally, a 1× 1 convolution layer consolidates these refined
representations, preparing them as guidance signals for the
subsequent fine-grained segmentation pipeline.

This architecture effectively distills critical information
from coarse-grained inputs, producing abstract, context-
enriched features that enhance the model’s ability to per-
form precise part-level segmentation.

A.3. Fine-grained Perception Module

Up

DouConv

Up

DouConv

g1 g2

Overview

Pooling

Norm

Multi-Head
Attention

Norm

MLP

Linear

bilinear

gG

Swin Transformer Block Text Transformer Block

Conv_decoder×2

gG

g3

Swin Transformer Block

Text Transformer Block

Swin Transformer Block

Text Transformer Block

Output

Conv_decod er
Conv_decoder

gG

g1  g2 

M

g3M

g3 g3

W-MSA

MLP

LN

LN

SW-MSA

MLP

LN

LN

W-MSA

MLP

LN

LN

g3M M

��

��
 ,

��
 ,,

��
 ,

��
 ,,

C

C C C

C C

Figure 8. Fine-grained Perception Module, focuses on segmenting
finer parts.The terms g1 and g2 represent intermediate features ex-
tracted from the 3rd and 7th layers of the CLIP model (ViT-B/16).

The structure of the Fine-grained Perception Module is
shown in Figure 8. This module comprises three main
components: the Swin Transformer for visual perception,
the Text Transformer for text-based perception, and a de-
coder head for segmentation. Three consecutive blocks
are employed in the visual perception pathway to capture
fine-grained features. The first and third blocks apply self-
attention within a local window guided by coarse-grained
information, while the second block employs shifted win-
dow self-attention without guidance. This configuration al-
lows the module to focus on foreground regions, reduce
background noise, and enhance the understanding of rela-
tionships among parts. In the text perception pathway, part



structure-enriched text features replace the original part-
level textual features, embedding structural relationships di-
rectly into the text representation. Overall, this module
leverages text features containing part structure relation-
ships and coarse-grained object information to guide pre-
cise part-level segmentation, further enhancing the model’s
ability to focus on fine-grained details within parts.

B. Additional Ablation Study

B.1. Ablation on input text templates
We study the importance of the template choice for the en-
tries in the text list in Table 7. We experiment with “A photo
of a {CLS} in the scene” template for our text entries where
{CLS} is the class name for the object mask. We also ex-
periment with the identity template “{CLS}”. Our template
choice: “A photo of a {CLS} in the scene” gives a strong
performance as a baseline. We believe more exploration in
the text template space could help improve performance.

Text Templates mIOU mACC

{CLS} 61.57 71.28
“A photo of a {CLS}” 62.38 72.19
“A photo of a {CLS} in the scene” 62.42 72.13

Table 7. Ablation on input Text Templates.

The results in Table 7 highlight the importance of text
template choice for segmentation performance. The tem-
plate “A photo of a {CLS} in the scene” achieves the high-
est mIOU and mACC scores, outperforming both the simple
“{CLS}” and the shorter template “A photo of a {CLS}”.
This suggests that more descriptive templates that provide
contextual information can better capture the semantic rich-
ness needed for accurate segmentation. While our selected
template serves as a strong baseline, further exploration
of alternative text templates could potentially lead to addi-
tional performance improvements by better aligning textual
and visual features.

B.2. Effectiveness of Graph Convolution Types
We assess several representative graph convolution types
within our SKGM architecture, including GraphConv [43],
ResGatedGraphConv [6], TransformerConv [51], MFConv
[17], LEConv [48], and TAGConv [16]. As shown in Ta-
ble 8, most graph convolution variants surpass the baseline
model in terms of mIOU and mACC, highlighting the adapt-
ability of the SKGM architecture to different convolutional
designs. Among these, TAGConv achieves the highest ac-
curacy and is therefore selected as the default configuration
for all further experiments unless otherwise noted.

The experimental results highlight the varying perfor-
mance of different graph convolution types within the
SKGM architecture, reflecting their distinct characteristics

and adaptability. TAGConv achieves the best results, lever-
aging multi-scale aggregation to capture both local and
global relationships, enhancing feature representation and
recognition. TransformerConv [51] and ResGatedGraph-
Conv [6] also perform well, with TransformerConv [51] im-
proving long-range dependency modeling via self-attention,
while ResGatedGraphConv [6] utilizes gated residual con-
nections to refine information flow and mitigate degradation
in deeper networks. Their strong performance underscores
the benefits of flexible information propagation in GCNs.

Conv Layers mIOU(%) mACC(%)

GraphConv [43] 61.38 70.85
ResGatedGraphConv [6] 62.23 71.76
TransformerConv [51] 62.21 72.10
MFConv [17] 60.64 70.31
LEConv [59] 60.44 69.83
TAGConv [16] 62.42 72.13

Table 8. GCN of different types of graph convolution.

In contrast, GraphConv [43] provides solid performance
but lacks the advanced propagation and feature extraction
capabilities of newer variants. MFConv [17] and LEConv
[59] show lower scores, likely due to MFConv [17]’s lim-
itations in modeling long-range dependencies and LEConv
[59]’s design for low-energy structures, making them less
suitable for this task.

B.3. Effectiveness of the loss
The parameters λo and λp control the segmentation loss for
the coarse-grained and fine-grained modules, respectively.
As illustrated in Table 9, increasing the weight of the fine-
grained module’s loss initially improves KPS performance,
as it strengthens the focus on detailed segmentation. How-
ever, as λp continues to increase, the gains diminish, indi-
cating that overemphasizing fine-grained detail can lead to
suboptimal results. The best performance is achieved when
λo= 0.2 and λp= 0.8, highlighting the importance of bal-
ancing these parameters to optimize both coarse- and fine-
grained segmentation objectives.

λp 0.2 0.4 0.6 0.8 0.9
λo 0.8 0.6 0.4 0.2 0.1

mIOU(%) 53.74 60.53 60.79 62.42 59.42
mACC(%) 65.61 70.24 70.42 72.13 70.48

Table 9. The ablation studies for two coefficients λo and λp.

B.4. Effectiveness of the Nm in the Mask Encoder
We assess the effect of varying the number of convolutional
layers Nm in the mask encoder, as detailed in Table 10, us-
ing configurations of Nm= [2, 3, 4, 5, 6, 8]. Results indi-
cate that performance improves with an increase in Nm up
to Nm= 4, which achieves the highest mIOU (62.42%) and
mACC (72.13%). Beyond this point, further increases in
Nm result in diminishing returns, and even slight declines



in performance due to potential overfitting, emphasizing the
importance of selecting Nm= 4 for optimal balance.

Nm mIOU(%) mACC(%) Nm mIOU(%) mACC(%)

Nm=2 60.54 70.29 Nm=6 60.93 71.05
Nm=3 61.69 72.04 Nm=8 60.62 71.49
Nm=5 62.34 71.88 Nm=4 62.42 72.13

Table 10. Ablation Study on Conv Count in the Mask Encoder.
The results in Table 10 show that increasing Nm in the

mask encoder improves segmentation performance up to
Nm= 4, where the highest mIOU (62.42%) and mACC
(72.13%) are achieved. This indicates that adding layers
initially enhances feature extraction, supporting better seg-
mentation outcomes. However, further increases beyond
Nm= 4 lead to diminishing returns and slight declines in
performance, likely due to overfitting as model complexity
increases. Thus, Nm= 4 provides an optimal balance, effec-
tively capturing rich features without excessive complexity.

B.5. Effectiveness of FPM Design
To evaluate the impact of specific design choices within
the fine-grained perception module, we performed abla-
tion studies focusing on two primary factors: the number
of Swin Transformer blocks and the application of coarse-
grained guided self-attention within a local window. We
tested configurations with both two and three consecu-
tive Swin Transformer blocks to observe how deeper fea-
ture extraction layers affect performance. Additionally, we
compared configurations using the original, unconditioned
self-attention within a local window against a variant with
foreground-focused, coarse-grained guided self-attention.

EXP Block Config Guidance mIOU(%) mACC(%)

(I) 2 blocks ✗ 62.22 71.70
(II) 2 blocks ✓ 62.29 71.39
(III) 3 blocks ✗ 61.72 71.51
(IV) 3 blocks ✓ 62.42 72.13

Table 11. Impact of different modules in our KPS. We show the
results of integrating different modules into the baseline.

Following Table 11, the results demonstrate that dif-
ferent configurations of Swin Transformer blocks and the
application of coarse-grained guided self-attention impact
the model’s segmentation performance. Specifically, us-
ing three Swin Transformer blocks with coarse-grained
guided self-attention (setting IV) yields the highest mIOU
and mACC scores, achieving 62.42% and 72.13%, respec-
tively. This configuration highlights the benefits of deeper
feature extraction in combination with foreground-focused
guidance, effectively enhancing fine-grained segmentation.
Conversely, reducing the number of blocks or omitting the
coarse-grained guidance leads to lower accuracy, suggest-
ing that both additional layers and targeted attention are key
contributors to model improvement.

C. More Qualitative Results
We provide more qualitative results on PartImageNet and
Pascal-Part in the Figure 9.
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Figure 9. Qualitative Results on Pascal-Part: Additional visualiza-
tion results.
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