6. Ray tracing algorithm pseudocode

Algorithm 1 Ray tracing algorithm

1: procedure RENDER(0, d) > ray parameters
2 to < 0

3 i < nn(o) > initial cell (nearest neighbour)
4: T+1

5: C+0

6 while 7" > e do

7 T v; > v;: primal vertex of cell ¢
8 t1 < o0

9: @

10: for all j € N(i) do > N(4): neighbours of cell ¢
11 x' v > v;: primal vertex of cell j
12: (t;,front) < INTERSECT(0,d, z, ')

13: if front and (¢; < ¢1) then

14: t1 tj

15: Vg

16: end if

17: end for

18: c<4¢c; > c;: color of cell ¢
19: o+ 0 > o;: density of cell ¢
20: a4 1—eotizto)
21: C+—C+H+Tac
22: T+T(1-a)
23: to < t1
24: i+
25: end while
26: return C

27: end procedure

Figure 8. Ray tracing — Our ray tracing algorithm is simple, and
based on the method proposed by Weiler et al. [57]. Unlike com-
mon algorithms for tracing triangle meshes and other unstructured
scene representations, we do not require a hierarchical acceleration
structure, and thus avoid the associated O(log(n)) query operation.

7. Additional implementation details

Training. Our training pipeline uses the Adam [22] opti-
mizer, and similarly to 3DGS, directly optimizes per-point
position, density and view-dependent color via spherical har-
monics of degree three. We use the softplus activation func-
tion with 5=10 for density to constrain it within the [0, c0)
range, while keeping smooth gradients. For the location
of points, we start at a learning rate of 2¢~* and decay it
using a cosine annealing scheduler to a final learning rate
of 2e~5. For point density and spherical harmonics, we
start at a learning rate of le~! and 5e~? respectively and
decay it with a cosine annealing scheduler by a factor of
0.1. Following 3DGS [19], we optimize only the zero-order

component of SH coefficients and the high-order coefficients
with a warmup for the first 25% of the total training itera-
tions. Similarly to [4, 21], after initialization and warm-up
training, we gradually grow the number of Voronoi sites so
that points are placed at useful locations. We progressively
increase the number of points up to half the total training
iterations, linearly increasing the number of points until the
maximum desired number of points is obtained.

Voronoi optimization. We maintain an adjacency data struc-
ture throughout training, which defines the Voronoi cells for
rendering. Whenever the primal vertex positions are changed
we must update the adjacency by performing an incremental
Delaunay triangulation. While much faster than a complete
rebuild, the incremental update is still computationally ex-
pensive for large point sets, so we allow the optimizer to
take multiple steps between mesh rebuilds. We start ata 1:1
ratio after each densification and increase to 1:100, as the fre-
quency of discrete changes to the mesh decreases over time
with the converging optimization. This strategy balances the
overall speed of training with maintaining a relatively accu-
rate mesh structure. All our experiments are optimized for
20k iterations, with the last 2k only updating radiance and
density attributes while positions are frozen. This process
takes, as an example, 77 minutes on the “bonsai” scene with
an RTX 4090 GPU.

8. Per Scene metrics

Tables 3 and 4 summarize the error metrics collected for
our evaluation of all considered techniques. These include
results for both Mip-NeRF360 [2] and Deep Blending [14]
scenes. However, 3DGRT [30] is excluded from per-scene
comparisons as these values are not reported in the original
paper, and the code is not publicly available.

9. Computation of positional gradients

As stated in Section 3, in a piecewise constant field, the gra-
dient for the primal points p; depends only on the segment
widths d,,. These segment widths are determined by the
points where the ray intersects the boundaries of the cells.
Specifically,d,, is given by §,, = t,, — t,,_1, where t,,_1,t,
represent the entry intersection and exit intersection of the
ray with a given cell c;. Without loss of generality, we will
derive the derivative for t,, with respect to the primal point
pi.

We will first express the cell boundaries(hyperplanes) in
terms of the primal points and then derive the intersections
in terms of the primal points. Since our mesh is a Voronoi
diagram, each cell boundary is a plane positioned at the
midpoint between two neighboring primal points, p; and p;.
The normal to this face is the vector pointing from p; to p;,

3DGS [19] Mip-Splatting [60] 3DGS-MCMC [21] | Plenoxels [45] iNGP-Big [31] MipNerf360 [2] Ours
PSNR? /SSIM1/LPIPS) PSNRT/SSIM{/LPIPS| PSNR{/SSIM{/LPIPS| | PSNR{/SSIMT/LPIPS| PSNRf/SSIM{/LPIPS| PSNR?1/SSIM{/LPIPS| PSNR?/SSIM? /LPIPS)
Room 30.63/0.91/0.27 31.74/0.93/0.27 32.30/0.93/0.25 | 27.59/0.84/0.42 29.69/0.87/0.26 31.63/0.91/0.21 30.87/0.91/0.19
Counter | 28.70/091/0.24 29.16/0.92/0.24 29.16/0.91/0.23 | 23.63/0.76/0.44 26.69/0.82/0.31 29.55/0.89/0.20 28.59/0.88/0.19
Bonsai 31.98/0.94/024 32.31/0.95/0.23 32.67/0.95/0.23 | 24.67/0.81/0.40 30.69/091/0.21 33.46/0.94/0.18 32.15/0.93/0.17
Kitchen | 30.32/0.92/0.14 31.55/0.93/0.15 32.23/094/0.14 | 23.42/0.65/045 29.48/0.86/0.20 32.23/0.92/0.13 31.40/0.91/0.13
Bicycle | 25.25/0.77/0.23 25.72/0.78/0.19 26.06/0.78/0.19 | 21.92/0.50/0.51 22.17/0.51/0.45 24.37/0.69/0.30 24.19/0.68/0.31
Garden | 27.41/0.87/0.12 27.76/0.88/0.11 27.99/0.87/0.11 | 23.49/0.61/0.39 25.07/0.70/0.26 26.98/0.81/0.17 26.58/0.82/0.16
Stump 26.55/0.78/0.24 26.94/0.79/0.21 27.67/0.78/0.20 | 20.66/0.52/0.50 23.47/0.59/0.42 26.40/0.74/0.26 25.48/0.71/0.29
Table 3. Per-scene metrics — PSNR, SSIM, and LPIPS scores for Mip-NeRF360 [2] scenes.
3DGS [19] Mip-Splatting [60] 3DGS-MCMC [21] | Plenoxels [45] iNGP-Big [31] MipNerf360 [2] Ours
PSNRT/SSIMt/LPIPS, PSNR?/SSIM?T/LPIPS] PSNRT / SSIM1 / LPIPS | PSNRT/SSIMT/LPIPS, PSNRT/SSIM?T/LPIPS| PSNRT/SSIM?T/LPIPS| PSNRT/SSIMt/LPIPS|
Dr Johnson | 28.77/0.90/0.33 28.76/0.90/0.32 29.05/0.89/0.33 | 23.14/0.79/0.52 28.26/0.85/0.35 29.14/0.90/0.24 28.33//0.88/0.27
Playroom 30.04/0.91/0.32 30.17/0.91/0.33 30.37/0.90/0.31 | 22.98/0.80/0.50 21.67/0.78/0.43 29.66/0.90/0.25 29.56/0.89/0.26
Table 4. Per-scene metrics — PSNR, SSIM, and LPIPS scores for Deep Blending [14] scenes.
given by: 20
©
4D =m o
x= PR ® 3 b
2 - S 10+
)
n=p;—P; ® < g0
<
The intersection t,, of the ray with this boundary can be 0 :
. 5
written as: 10 20 30 10°
Valence # cells
g, = Xx-o)n (10)
n d-n Figure 9. Cell valence — (left) High valence is rare in a trained

where o is the ray origin, and d is the ray direction. Using
the chain rule, we differentiate t,, with respect to p;:

dt, mn/2—(x—-o) (x—o)-nd n
dp; d-n (d-n)? (
_o—p;+t,d
B d-n 12)

Following the same procedure, we can compute the deriva-
tive of t,,_1 with respect to p;.

10. Scalability of traversal loop

While one could construct pathological inputs where cell
valence (number of cells that share a face) grows arbitrarily
large — potentially harming performance — such cases do not
arise in our trained models, as illustrated in Figure 9 (left).
As shown in Figure 9 (right), this trend holds even as the
total number of cells increases, suggesting that resolution
does not introduce excessive local complexity.

11. Point budget analysis

Figure 10 shows how reconstruction quality (PSNR) varies
with the number of points used in the representation for the
bonsai scene. The experiment was conducted over a fixed
training schedule of 20,000 iterations for each setting, with
the point budget up to 2 million points.

model, with 99.9% of cells having valence below 30. Most cells
have valence in the range of 12 to 18, which ensures that the num-
ber of neighboring faces remains bounded. This makes the search
for the exit face during traversal nearly constant-time for every cell
along a ray. (right) The average valence remains approximately
constant across varying cell budgets, indicating that increased reso-
lution does not significantly affect local connectivity complexity.

12. Detailed training time breakdown

Table 5 provides a detailed breakdown of the total training
time for the bonsai scene, computed over 20k iterations,
which results in a final point cloud containing 2 million
points. These are computed with a batch size of 1 million
rays and constitute the primary computational load during
optimization.

13. Density slices

In Figure 11, we visualize a cross-sectional slice through
our volumetric density field along the plane indicated by the
red laser in the inset image. This slice reveals the internal
structure of our representation, where high-density regions
(shown in black) are concentrated on the surfaces of the
3D geometry, while the surrounding free space maintains
near-zero density.

Stage Total Time (s) Time per iteration (ms) Percentage (%)
Triangulation 1600 80.3 34.8
Initial cell 128 6.41 2.78
Forward pass 730 36.5 15.8
Backward pass 2150 108 46.7
Training time 4620 231 100

Table 5. Detailed Training Time Breakdown - Stage-wise breakdown of training time for the bonsai scene over 20,000 iterations. The
table reports total time, average time per iteration, and percentage contribution for each stage.

32+

PSNR

30

T T T T T T T T]

106
cells

Figure 10. Performance with varying point budget — PSNR

improves consistently as the number of points increases, demon-

strating that more cells yield more accurate reconstructions. Results

are shown for the bonsai scene with budgets ranging up to 2 million
points.

14. Geometric quality

In Figure 12, we present qualitative visualizations of pre-
dicted depth maps on a variety of scenes from the Mip-
NeRF360 dataset. Each depth image includes an inset
RGB view from the same scene for spatial context. The
visualizations demonstrate that the model accurately cap-
tures fine scene geometry and preserves spatial consistency
across complex environments. Depth discontinuities at ob-
ject boundaries are well preserved, and smooth gradients are
maintained across planar surfaces. These examples highlight
the effectiveness of our method in producing detailed and
geometrically consistent reconstructions across both indoor
and outdoor scenes.

Figure 11. Volumetric density slice — Cross-sectional visualization
of the volumetric density field for the garden scene. The slice is
taken along the plane indicated by the red laser in the inset image.
High-density regions (shown in black) correspond to surfaces of
the 3D geometry, while empty space maintains near-zero density
(white), highlighting the surface-localized nature of the representa-
tion.

Figure 12. Depth maps — Qualitative visualizations of depth maps across diverse scenes from the mipnerf360 dataset. Each pair shows the
predicted depth (in color) with an inset of the corresponding RGB image for reference. Cooler colors (blue) indicate closer surfaces, while
warmer colors (red/yellow) represent farther regions.

	Ray tracing algorithm pseudocode
	Additional implementation details
	Per Scene metrics
	Computation of positional gradients
	 Scalability of traversal loop
	Point budget analysis
	Detailed training time breakdown
	Density slices
	Geometric quality

