
Robust 3D Object Detection using Probabilistic Point Clouds
from Single-Photon LiDARs

Supplementary Material

We provide additional details and results that comple-
ment the main paper in this report. We include more results
with real captures (section 1), ablation studies (section 2),
implementation details and additional results from our 3D
detection benchmark (section 3), results with more 3D de-
tectors (section 4), histogram denoising and compression
methods (section 5) and raw histogram examples under low
SBR (section 6).

1. Recognition with Real Captures
In this section, we provide further details about our LiDAR
setups and more results on real PPC captures.

1.1. Camera Setups
We use a LiDAR sensor with an external laser for our in-
door captures. This allows us to control various camera and
scene parameters (e.g., exposure time, laser power, and am-
bient illumination) over a wide range. We use a commercial
LiDAR sensor for our outdoor captures. This allows us to
have a portable low-power LiDAR setup for outdoor envi-
ronments. Here are the details of both setups:

Indoor Camera Setup: Our indoor setup uses a SPAD-
LiDAR sensor with an external class 4 laser. Fig. 1 shows
the front view of our setup with the HORIBA FLIMera [5]
camera. The temporal resolution of the camera is about
380ps, which is in line with the full-width at half-maximum
(FWHM) of the instrument response function (IRF) of the
device. We set up our camera system with the Katana
laser [3], which is a high-powered pulsed picosecond laser
system by OneFive. The laser has a wavelength of 532nm
(green). We operate the laser under low power settings
(ranging from 50-100mW). We use a flash illumination
setup with a diffuser to illuminate the field of view of the
sensor. We use a 3.8mm focal length lens for a wider field of
view of the scene. The laser system, as well as the FLIMera
sensor, is connected to an external computer to receive the
synchronization signal and trigger for the capture.

Outdoor Camera Setup: Our outdoor camera setup uses a
commercial LiDAR sensor, which is a more portable cam-
era and uses low input power. Fig. 2 shows the front view
of the setup with Adaps [9] camera. The camera is rated for
an accuracy of more than 5cm up to a range of 30m. The
setup has a wide FOV (120°horizontal and 90°vertical). We
also vary the exposure time from 0.1s to 1s to simulate var-
ious signal levels. The camera can operate at a very low
power input (<10W) and is connected to a small portable

Figure 1. Indoor Camera Setup: The Figure shows the front
view of our FLIMera camera setup (left) and the sensor (right).

Figure 2. Outdoor Camera Setup: The Figure shows the front
view of our Adaps camera setup (left) and the sensor (right).

AC power source. The camera also saves low-resolution
(256x192) grayscale images, which are used for visualiza-
tions only. We also mount a smartphone camera in our setup
to simultaneously capture high-res RGB images, used for
visualizations only for some static scenes shown in the main
paper and supplementary report.

1.2. 3D Object Detection Results
Fig. 3 and 4 show a comparison of our approach with the
baselines using real indoor and outdoor captures. Matched
Filtering baseline suffers from noise and often detects false
positives. Thresholding frequently misses small or farther
objects in the scene. Baselines struggle with farther chairs
in indoor captures and farther cars and pedestrians in out-
door captures. Our approach detects most objects with tight
bounding boxes.
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Figure 3. 3D Detection Results on Real Outdoor Captures: Figure compares our method with the baselines under very challenging low
SBR conditions. The first scene includes 6 cars, and baselines fail to detect farther cars. The second scene shows 2 cars and a pedestrian,
and the baselines struggle to detect the distant pedestrian. The third scene includes a car, two pedestrians, and a cyclist. The ground truth
objects are marked in the camera scene images for easier visualization. PPC detects most objects (e.g. cars, pedestrians, and cyclists) in all
scenes with accurate bounding boxes.
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Figure 4. 3D Detection Results on Real Indoor Captures: Figure compares our method with the baselines under challenging low SBR
conditions. Baselines fail to detect many small and farther objects, e.g. chairs in the back, in many scenes. PPC detects most objects (e.g.
chair, table, and couch) with tight bounding boxes.



2. Ablation Studies
In this section, we include the ablation studies of our pro-
posed method. We evaluate various design choices on the
SUN RGB-D benchmark using the VoteNet architecture.

First, we analyze the effectiveness of both NPD Filter-
ing and FPPS individually. Fig. 5a shows the results of our
approach without NPD and FPPS. NPD filtering shows a
significant gain in performance, especially under very low
SBR scenarios. FPPS shows an additional 2-4% improve-
ment in mAP under very low SBR conditions.
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Figure 5. Ablation Study of PPC Components: Performance of
our approach (a) without FPPS and NPD Filtering, and (b) without
probability attribute.

Second, we show the performance of our method on
point clouds without the probability attribute in Fig. 5b.
This is equivalent to using our approach with a conventional
point cloud (i.e., all points with probability 1). The proba-
bility attribute accounts for about a 4-5% gain in mAP per-
formance and is significant in very low SBR conditions.
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Figure 6. Ablation Study of PPC Hyperparameters: Perfor-
mance of our approach with varying (a) NPD Score Value, (b)
FPPS Value, (c) Max Ball Neighbors, and (d) Ball Radius.

We also show the performance of our approach by vary-
ing the hyperparameters of NPD filtering (α) and FPPS (β).
Fig. 6a and 6b show the mAP on the complete SUN RGB-
D test set of all SBR levels. We chose the best performing
value of α = 0.003 and β = 0.01 for our models.

We also analyze our method by varying the hyperparam-
eters of NPD score calculation, i.e., max ball neighbors (L)
and ball radius (r). Fig. 6c and 6d show the mAP on the
complete SUN RGB-D test set of all SBR levels. We find
an optimal NPD score value (α) for each experiment. In-
creasing the radius too much starts to hurt the performance,
as noisy sparse points have more neighbors if the ball radius
is bigger. Performance improves as the value of L increases,
but saturates around 64. We chose the values of r = 0.2 and
L = 64 for our models.

Table 1 analyzes the total per-scene runtime of our
method on the SUN RGB-D dataset. We use a single RTX
2070 Super GPU machine for inference time calculation.
Adding FPPS adds no computational overhead, whereas
adding NPD filtering adds less than 8% of runtime with our
implementation.

Inference Time (ms)

PPC 95
PPC w/o FPPS 95
PPC w/o NPD 88

PPC w/o FPPS & NPD 88

Table 1. Ablation Study of Runtime: Our method adds no sig-
nificant computational cost to runtime.

We analyze the performance of the Thresholding base-
line by varying the threshold used for the model. Fig. 7
shows AP@25 results on the complete SUN RGB-D test set
of all SBR levels. We select the best performing threshold
(=1.1) for evaluating this baseline.
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Figure 7. Ablation Study of Thresholding baseline: Perfor-
mance of the Thresholding baseline with varying threshold used
for the model.



Matched Thresholding PointClean Score PathNet PPC
Category Filtering Net [12] Denoise [7] [16] (Ours)

Bed 54.37 67.33 53.59 68.57 67.53 72.97
Sofa 16.20 28.15 22.00 38.25 38.03 45.19
Table 29.61 37.99 30.20 33.93 32.17 40.47

Bathtub 6.04 25.14 2.71 14.04 13.46 54.32
Desk 7.97 14.16 7.78 8.33 9.18 17.37

Bookshelf 2.12 4.85 0.67 1.01 0.89 9.80

Chair 22.05 34.27 22.92 27.45 25.43 47.47
Night Stand 3.10 14.45 7.41 10.23 9.13 30.49

Dresser 2.58 4.64 2.80 2.44 2.09 13.73

Table 2. Category-wise 3D Object Detection Results: Table shows per category AP@25 results on the SUN RGB-D dataset under low
SBR (0.02) conditions. Our approach outperforms all baselines and shows large gains for smaller object categories (below the line) like
chairs and nightstands.

Avg. SBR Car Pedestrian Cyclist
Easy Mod Hard Easy Mod Hard Easy Mod Hard

Matched Filtering 79.02 59.95 57.67 50.85 47.06 43.51 68.78 43.74 41.10
Thresholding 78.73 59.40 55.35 54.45 49.23 45.38 68.13 44.96 42.64
PPC (Ours) 79.10 60.29 59.08 60.42 55.39 50.82 71.99 47.76 44.84

Table 3. KITTI 3D Detection Comparison: Table shows mAP for easy, moderate, and hard difficulty levels on KITTI val split calculated
with 11 recall positions for PV-RCNN architecture under low SBR (0.01) conditions.

3. Additional 3D Object Detection Results
In this section, we include implementation details, addi-
tional results, and analysis that supplement the experiments
in the main paper.

3.1. Datasets
We evaluate our approach on 3D object detection bench-
marks of SUN RGB-D [13] and KITTI [2]. SUN RGB-D
consists of ∼10K RGB-D scans of indoor scenes annotated
with 3D bounding boxes. The dataset also provides camera
intrinsic and extrinsic parameters to convert depth scans to
3D point clouds. We use the standard evaluation protocol
that considers 10 common object categories. KITTI dataset
is a widely used outdoor autonomous driving dataset con-
taining ∼7.4k annotated scenes with LiDAR point clouds.
We follow the standard evaluation protocol using three cat-
egories: car, pedestrian, and cyclist.

3.2. Implementation Details
We implement our method using the MMDetection3D
framework [1] provided by OpenMMLab and use the same
evaluation procedure as the previous literature. For the SUN
RGB-D dataset, the color information from the point clouds
is not used for inference and is only used for visualization.
For the KITTI dataset, the reflection intensity information
from LiDAR point clouds is used as input for all methods.

3.3. Category-wise Performance
Table 2 shows per-category AP@25 results on the SUN
RGB-D dataset for all methods under low SBR (0.02) con-

ditions. Our approach shows significant gains for all cate-
gories, particularly larger gains for small-sized object cate-
gories (e.g. chair, nightstand, dresser) which typically suffer
the most under low SBR conditions. Table 3 shows mAP
on the KITTI val split for PV-RCNN architecture under low
SBR (0.01) conditions, calculated with 11 recall positions
in a standard format similar to previous works. PPC outper-
forms the baselines in all categories.

3.4. Visualizations and Observations
Fig. 8 to 11 show visualizations of 3D object detection on
the SUN RGB-D dataset for all methods under different
SBR conditions using the VoteNet architecture. Fig. 8 and
9 show complex scenes with a large number of small ob-
jects (e.g. chairs). Baselines fail to detect a lot of small and
farther objects (last row of chairs), whereas PPC detects the
most objects accurately. Fig. 10 and 11 show scenes with
very low SBR conditions. Baselines fail to detect many
objects, whereas our approach performs significantly bet-
ter even in the presence of a large amount of noise. Fig. 12
shows a few failure cases for our method. PPC can some-
times detect multiple overlapping bounding boxes for the
same object under noise. Couch or single-sitter couches are
often detected as chairs by PPC or other baselines. Fig. 13
to 16 show scenes from the KITTI val dataset under varying
SBR conditions using PV-RCNN architecture. Baselines
fail to detect many objects, like farther cars and pedestri-
ans, whereas our approach detects most objects.
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Figure 8. 3D Object Detection Results: Figure shows scenes from the SUN RGB-D dataset under medium SBR (0.1) conditions. The
first scene contains multiple rows of small objects (chair). Baselines fail to detect farther rows of chairs. Our approach detects most chairs
and table.
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Figure 9. 3D Object Detection Results: Figure shows scenes from the SUN RGB-D dataset under medium SBR (0.05) conditions. Scenes
consist of small (chair) and farther objects (bookshelf). Our approach detects most objects with no false detections.
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Figure 10. 3D Object Detection Results: Figure shows scenes from the SUN RGB-D dataset under low SBR (0.02) conditions. Scenes
consist of small (nightstand) and occluded objects (table). Our approach performs better than all baselines.
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Figure 11. 3D Object Detection Results: The figure shows scenes from the SUN RGB-D dataset under low SBR (0.01) conditions.
Baselines fail to detect numerous objects (chair) due to noise, whereas our approach detects most objects in the scene.

Scene Ground TruthMatched Filtering Thresholding PPC (Ours)Score-Denoising

Figure 12. 3D Detection Failure Cases: The first scene shows a scenario where PPC detects multiple boxes for the same object (night-
stand). The second and third scenes show scenarios where a couch is detected as a chair by PPC and the baselines. Single-sitter couches
are often detected as chairs by this model.
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Figure 13. 3D Object Detection Results: Figure shows scenes from the KITTI dataset under medium SBR (0.05) conditions. Baselines
fail to detect farther cars. PPC is more robust for distant objects.
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Figure 14. 3D Object Detection Results: Figure shows scenes from the KITTI dataset under low SBR (0.02) conditions. The first scene
shows a scenario where baselines fail to detect objects like farther cars and the pedestrian. PPC is more robust for distant objects.
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Figure 15. 3D Object Detection Results: Figure shows scenes from the KITTI dataset under low SBR (0.01) conditions. Baselines
struggle with farther cars, whereas PPC detects most objects.
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Figure 16. 3D Object Detection Results: Figure shows scenes from the KITTI dataset under low SBR (0.005) conditions. Baselines fail
to detect dark and farther objects like black cars. PPC is more robust for distant objects.



4. More 3D Detection Architectures

In this section, we evaluate our PPC approach using a vari-
ety of 3D object detection architectures. First, we evaluate
a camera-LiDAR fusion approach, ImVoteNet [10]. Table 4
includes the comparison on the SUN RGB-D dataset, which
shows significant improvement for all SBR levels. Second,
we evaluate using a recent LiDAR-only transformer-based
architecture Uni3DETR [15]. Table 5 includes mAP com-
parison on the SUN RGB-D dataset, which shows perfor-
mance improvement for low SBR levels. Lastly, we eval-
uate using a Pillar-based architecture, PointPillars [6]. Ta-
ble 6 includes mAP for car, pedestrian, and cyclist cate-
gories on moderate difficulty of KITTI val split, calculated
with 11 recall positions. Our method shows significant im-
provements under low SBR conditions for pedestrian and
cyclist categories.

PPC shows significant gains under low SBR for all
detection architectures, which shows its versatility for a
wide range of 3D detection models. The gain is large for
point-net or transformer-based architectures (Uni3DETR,
VoteNet, and ImVoteNet) as they suffer the most from the
low SBR noise. The gain is significant but comparatively
smaller for voxel or pillar-based architectures (PointPillars
and PV-RCNN). Intuitively, this could be because the spu-
rious points with large depth errors are away from the sur-

face, and are not part of the same voxel or pillar as the sur-
face points. Hence, their impact on the performance is also
smaller.

4.1. Additional 3D inference tasks
Our approach is easy to extend to other 3D inference tasks,
e.g. point cloud classification and point segmentation, with
minimal modifications. Table below shows preliminary re-
sults for point cloud classification using PointNext [11]
backbone on ScanObjectNN [14] dateset. PPC outperforms
the baselines under low SBR conditions.

Avg. SBR 0.1 0.01

Matched Filtering 62.3 49.8
Threshoding 64.4 53.4
PPC (Ours) 70.5 58.4

Table 7. Classification overall accuracy on ScanObjectNN dataset.

Avg. SBR Clean 0.1 0.05 0.02 0.01
AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50

Matched Filtering 63.37 35.51 53.89 27.64 53.23 24.67 37.54 10.99 33.17 7.98
Thresholding 64.25 36.17 59.57 33.44 58.82 32.45 42.43 18.17 39.51 12.61
PPC (Ours) 64.36 36.94 61.51 35.69 60.19 31.38 53.21 25.37 46.84 20.14

Table 4. 3D Detection Comparison using camera-LiDAR fusion architecture: AP@0.25 and AP@0.50 results on the SUN RGB-D
dataset using ImVoteNet show significant gains for PPC for all SBR levels.

Avg. SBR Clean 0.1 0.05 0.02 0.01
AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50 AP@25 AP@50

Matched Filter 64.98 48.28 61.52 45.09 60.82 43.92 51.12 34.09 45.29 27.97
Thresholding 64.50 47.94 61.08 44.71 61.19 44.29 51.97 34.87 48.13 28.64
PPC (Ours) 65.53 49.35 62.58 46.71 61.98 48.28 56.46 38.03 51.21 31.16

Table 5. 3D Detection Comparison using LiDAR-only tranformer-based architecture: AP@0.25 and AP@0.50 results on the SUN
RGB-D dataset using Uni3DETR show significant gains for PPC under low SBR conditions.

Avg. SBR Clean 0.05 0.02 0.01 0.005
Car Ped Cyc Car Ped Cyc Car Ped Cyc Car Ped Cyc Car Ped Cyc

Matched Filtering 77.08 52.78 64.49 68.25 49.52 58.96 64.13 47.67 46.45 54.43 41.61 41.76 45.03 32.46 31.06
Thresholding 77.34 52.09 64.81 68.06 49.63 59.09 63.87 47.92 46.96 54.18 40.88 42.18 45.11 32.79 31.89
PPC (Ours) 77.19 52.12 65.21 69.12 50.23 62.44 65.63 49.27 48.09 56.39 45.77 44.46 47.24 38.74 34.89

Table 6. 3D Detection Comparison using LiDAR-only pillar-based architecture: mAP results for car, pedestrian, and cyclist categories
on moderate difficulty of KITTI val split calculated with 11 recall positions for PointPillars. Our method shows significant gains under low
SBR conditions.



5. Comparison with Denoised 3D Temporal
Histograms

An effective approach for removing noise in 3D sensing
systems described in this work is to denoise the 3D tem-
poral histograms. Current state-of-the-art denoising meth-
ods for temporal histograms denoising [8] show high per-
formance on depth reconstruction tasks. Hence, we also
evaluate our approach and baselines using denoised tem-
poral histograms. We use a 3D-CNN denoising model [8]
to denoise the temporal bins, which are then used to con-
struct point clouds for inference. We compare our method
with the baselines under low SBR (0.02) conditions in Ta-
ble 8. As expected, all methods perform better with de-
noised temporal histograms. Our method shows a further
gain in AP@0.25 of about 3-4%, which shows that 3D in-
ference can benefit from our PPC approach with denoised
temporal histograms as well.

Histogram Thresholding PointClean Score- PathNet PPC
Denoising Net Denoising (Ours)

Method

- 29.58 18.24 26.35 25.45 38.49
3D-CNN [8] 50.30 51.03 50.85 51.07 54.25

Gaussian Filter 38.79 40.12 43.36 43.25 50.93

Table 8. 3D Object Detection Results: Comparison of AP@0.25
results using denoised temporal histograms.

We also compare the effectiveness of our method with a
non-learning-based histogram denoising method. We use a
5x5 Gaussian filter in the spatial dimension to denoise his-
tograms. Matched filtering is still used over the temporal
dimension. Table 8 shows that our method has significant
gains with Gaussian denoised histograms, and the perfor-
mance is comparable to the results with 3D-CNN denois-
ing.

Should we denoise 3D temporal histograms for infer-
ence? Denoising methods like [8] require compute and
memory-intensive 3D-CNN operations, which makes it in-
feasible for real-time applications. It is thus not suitable
for sensor on-chip processing. It also requires a read-out of
full 3D temporal histograms, which has a significantly high
data-bandwidth cost (compared to only reading out a point
cloud as considered in earlier approaches in the main pa-
per). However, it is an effective approach for denoising in
non-real-time applications.

The Gaussian filter is a computationally cheap, non-
learning-based operation and is feasible with sensor on-
chip processing. Table 9 shows the inference time of our
complete recognition pipeline (including denoising tempo-
ral histograms, point cloud processing, and inference) with
different histogram denoising methods that are discussed.
This suggests that, given a computational budget, a sim-

ple histogram denoising approach like a Gaussian filter is a
good candidate for 3D recognition.

Histogram Denoising Method Runtime (ms)

- 95
3D-CNN 7200

Gaussian Filter 98

Table 9. Runtime Time for 3D Detection: Comparison of per-
scene runtime time of our method using different histogram de-
noising methods.

5.1. Comparison with Compressed 3D Timing His-
tograms

Recently, compression techniques have been proposed to
read out compressed representations [4] of the temporal his-
tograms to reduce data bandwidth requirements. We also
show the performance of our approach on such decom-
pressed histograms in Table 10. We use a lightweight Trun-
cated Fourier (k=32) representation from [4] for evalua-
tion. Our approach is effective even under the data loss in-
curred due to compression and shows significant gains over
the Thresholding baseline for 3D detection.

Threshoding PPC (Ours)

Decompressed Histograms 16.50 29.77

Table 10. 3D Object Detection Results: Comparison of
AP@0.25 results using decompressed histograms.



6. Point Clouds Under Extremely Low SBR
Conditions

We use matched filtering output from the timing histograms
to find the peak and compute the probability attribute for
each point. Under extreme conditions of low signal, there
may not be any bin with more than one detected photon.
The matched filtering output can still provide a dominant
peak corresponding to the signal, and hence a correct point
in the point cloud, if there are ‘clusters’ of photon detections
in nearby bins. Figure 17 illustrates this using a histogram
and its matched filtering output.
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Figure 17. An example of a raw histogram and matched filtering
output for a LiDAR measurement under extremely low SBR.

Under ultra-low SBR, or when there is no return signal,
there could be multiple sparsely located bins with single
photon detection. Figure 18 shows an example to illustrate
this scenario. In such cases, there is no peak corresponding
to more than one photon in the matched filtering output. We
use a minimum height threshold to ignore such points in the
3D point cloud.
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Figure 18. An example of a raw histogram and matched filtering
output for a LiDAR measurement under extremely low SBR.
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