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1. Additional Details

In this section, we provide detailed information on
the network architecture, training procedure, evaluation
pipeline, baselines, dataset handling, and parameter set-
tings used in our experiments.

1.1. Network Architecture and Design Choices

Our model adopts a ResNet50 backbone pretrained on
ImageNet to extract features from the input RGB image.
The extracted feature map (of dimension 2048) is then
reduced to 128 channels via a convolution followed by
batch normalization and ReLU activation (implemented
in our custom ConvBnReLU module). These features
are further projected to a 48-dimensional space using a
linear layer.

To preserve spatial information, a positional encod-
ing is computed from normalized (x, y) coordinates us-
ing a small MLP with a Tanh activation. Two sets of
learnable query tokens are introduced:

• A single CLS token for predicting a global room-type
label.

• 40 ray tokens for predicting semantic rays.

Both sets of tokens attend to the flattened spatial features
using a single-head cross attention module. The ray to-
kens are additionally processed by a self-attention block
(with residual connections and a feed-forward network)
followed by an MLP to produce per-ray logits over se-
mantic classes. The room token is processed similarly
to yield room type logits.

1.2. Training Settings and Hyperparameters

As mentioned in the main paper, our semantic network
is implemented within a PyTorch Lightning module to
perform multi-task predictions, simultaneously produc-
ing 40 semantic ray outputs (one per ray) and one global
room-type label. During training, the predicted ray out-
puts (with shape (N, 40, num_ray_classes)) are super-
vised via cross-entropy loss against the ground-truth se-
mantic labels (shape (N, 40)), while the global room-
type prediction (with shape (N, num_room_types)) is
similarly trained using cross-entropy loss. The overall
loss is defined as the sum of these two components. We
optimize the network using the Adam optimizer with a
learning rate of 1× 10−3 and a batch size of 16.
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1.3. Dataset Descriptions
Additional dataset processing details are provided here
for clarity.

S3D We use the fully furnished, perspective dataset of
Structured3D (S3D) with the official splits and process-
ing protocol.

ZInD For ZInD, we follow the official splits and prior
works to generate a fixed-size dataset by cropping each
panorama to a single 80° FoV, 0° yaw perspective image.

1.4. Baseline Methods
We compare our method against several baselines to as-
sess its performance under a consistent evaluation pro-
tocol.

F3Loc For the F3Loc baseline, we use the publicly
available code from the official repository and made a
some modifications to the way we calculate rays and
identify walls for the ZInD dataset, but. For the S3D
dataset, we report the official paper results as we oper-
ate on the exact same data split and processing protocol.
For the ZInD dataset, we evaluate F3Loc by running its
training and inference using the provided code and con-
figuration.

LASER For the LASER baseline, we use the official
implementation available from the authors. Since the
provided code runs on both datasets, we execute LASER
as-is. For S3D, we follow F3Loc by evaluating on the
official fully furnished perspective dataset. For ZInD,
we run the official training and evaluation code while
adjusting the configuration to crop the panoramas to an
80° FoV and to disable random view augmentations, as
detailed in Section 1.3.

1.5. Additional Implementation Details
1.5.1. Semantic Interpolation via Majority Voting
As described in the main section, we introduce a major-
ity voting algorithm to interpolate the predicted l seman-
tic rays into a smaller subset. As shown in our ablation
study, this interpolation alone yields a 4.2% improve-
ment in 1m recall. The detailed algorithm is provided in
Algorithm 1.

1.5.2. Ray Similarity Measurement
To assess the alignment between the predicted rays and
the candidate rays in our refinement procedure, we com-
pute a similarity score that combines both depth and se-
mantic discrepancies. Specifically, we calculate the L1
distance between the predicted depth rays and the can-
didate depth rays to capture the geometric error, and we

Algorithm 1 Semantic Ray Interpolation with Majority
Voting

Require:
1: 1. A semantic ray vector r of length N .

2. Field-of-view fov = 80◦.
3. Desired number of rays Nd.
4. Desired angular gap ∆θ.
5. Window size w for majority voting.

2: Compute the angle between original rays: ∆α.
3: Compute the center index: c← ⌊N/2⌋.
4: Initialize an empty semantic ray vector rinterp.
5: for i = 0 to Nd − 1 do
6: Compute the desired angle relative to the center:

θi ← (i− ⌊Nd/2⌋)×∆θ.

7: Compute the index offset:

o← θi
∆α

.

8: Determine the target index:

idx← round(c+ o).

9: Collect neighbor labels:

neighbors← { r[j] | j = idx− w, . . . , idx + w}.

10: Determine the majority label l∗.
11: Append l∗ to rinterp.
12: end forreturn rinterp.

compute a semantic error as the mean mismatch between
the predicted semantic labels and the candidate semantic
labels. These two error metrics are then combined using
a weighted sum:

score = α · depth_error + (1− α) · semantic_error,

where the depth error is computed as the average ab-
solute difference between corresponding depth values,
and the semantic error is quantified as the average bi-
nary mismatch between semantic labels. In all our ex-
periments, we set α equal to wd, the weight assigned to
the depth probability volume in our fusion equation.

1.6. System Configuration
All training experiments were conducted on a virtual
machine with the following specifications:
• CPUs: 12 cores (Intel Xeon E5-2690 v4 @ 2.60GHz)
• GPU: Tesla V100-PCIE GPUs (with 16GB memory

each)
These hardware details ensure reproducibility and

highlight the computational resources available during



training.

2. Additional Ablation Studies
In this section, we present a series of ablation studies
to evaluate key components of our localization pipeline.
In Section 2.1 we analyze the impact of using external
room-polygon masks. Section 2.3 examines the effect
of varying Top-K candidate selections and refinement
parameters. Finally, in Section 2.4 we investigate the
influence of the refinement threshold δres on balancing
fine and coarse localization accuracy.

2.1. Effect of Room Polygon Usage
As part of our usage of room-polygon masks, we also
compare the performance of using external house-area
masks versus not using them. As shown in Figure 1,
we use a mask to exclude points from outside the house.
This avoids matching windows and corners that lie be-
yond the interior. Notably, when the highest-probability
location is masked out, the next best match is closer to
the ground-truth location, yielding an improvement.

(a) no mask (b) with mask

Figure 1. Comparison of the scene without mask (a) and with
mask (b).

Table 1 presents a comparison of the recall ob-
tained by our method with and without external mask-
ing, demonstrating that this procedure does not yield any
substantial gains.

Mask Setting 0.1 m 0.5 m 1 m 1 m 30◦

with 5.63 45.67 59.36 57.82
without 5.13 45.07 59.24 57.61

Table 1. Comparison of localization accuracy on S3D with and
without external house-area masks.

2.2. Impact of Top-K Candidate Selection on Test
Set Performance

We further analyze our coarse-to-fine approach by con-
ducting an experiment to evaluate the effect of selecting

TopK Method 0.1m 0.5m 1m 1m 30°

Top1
No refine 4.65 38.35 49.40 48.44

Ourss 4.73 38.35 49.59 48.59
Oursr 5.29 11.84%↑ 42.81 11.63%↑ 55.76 12.44%↑ 54.30 11.74%↑

Top2 Ourss 4.96 41.08 52.20 51.39
Oursr 5.48 10.48%↑ 45.31 10.30%↑ 58.43 11.93%↑ 57.19 11.28%↑

Top3 Ourss 5.23 41.27 52.96 52.04
Oursr 5.34 2.10%↑ 45.24 9.63%↑ 58.77 11.00%↑ 57.28 10.07%↑

Top5 Ourss 5.42 41.87 53.52 52.61
Oursr 5.70 5.17%↑ 45.53 8.74%↑ 58.78 9.83%↑ 57.49 9.28%↑

Table 2. Ablation study on the coarse-to-fine Top-k selection
in the S3D dataset, evaluating the location extraction module
and the effect of room type prediction in our pipeline. Recall
metrics (in %) for our methods (Ourss and Oursr) are reported.
For each metric, the improvement is shown to the right of the
Oursr score in dark green with an upward arrow indicating the
relative improvement over Ourss.

different numbers of Top-K candidates. Table 2 details
the impact of various Top-K values on the localization
refinement. We observe that as k increases, the overall
localization accuracy improves. In particular, the largest
improvement is achieved when increasing from Top-1 to
Top-2 candidates, which is sensible since over 70% of
the ground-truth locations lie within the Top-1 and Top-
2 candidate set. Beyond Top-2, while further increases
in k yield additional improvements, these gains are mi-
nor compared to the initial boost. This is likely due to
prediction errors and noise. As k increases, additional
candidates may include rays that were previously inter-
polated out, leading to mislocalizations when they are
erroneously matched.

2.3. Top-K Location Distribution Analysis
To better understand the effectiveness of our coarse-to-
fine strategy, we conducted an in-depth study on the im-
pact of selecting the Top-K candidate poses and on the
localization accuracy. For simplicity of this analysis,
no angular augmentations were applied in this analysis.
all data were collected from the S3D test dataset using
the following parameters: δres = 1m, δang = 0◦, and
∆max = 0◦.

Figure 2 presents the candidate ranking distribution.
In 51.1% of cases, the Top 1 candidate is closest to the
ground truth, while the second and third candidates ac-
count for 19.4% and 12.7% of cases, respectively. In
this analysis, we maintain a 1 m exclusion radius around
each candidate to emphasize strong mismatches. This
motivates refining the Top-K candidates instead of re-
lying solely on the Top-1 candidate during the coarse
stage.

Furthermore, Figure 3 shows that approximately 90%
of the localization improvements occur when a candi-
date is shifted by more than 0.5 m relative to the highest-
scoring candidate (K=0) in the structural-semantic prob-
ability volume. This finding reinforces the benefit of se-
lecting the best candidate among the Top-K predictions.



Figure 2. Distribution of the best candidate index on the S3D
test set. The Top 1 candidate is closest to the ground truth in
51.1% of cases, followed by the second and third candidates.

Figure 3. Histogram of distance improvements for Top-K se-
lections. Approximately 90% of the improvements exceed
0.5 m compared to the highest-scoring candidate (K=0).

Figure 4 illustrates the discrepancies between seman-
tic and depth ray predictions when the top candidate
(K0) is not the best match. The trend of decreasing
sample percentages with increasing differences in the se-
mantic rays confirms that even small changes in seman-
tic cues are critical for accurate localization. This effect
is also evident when a semantic label resolves ambigu-
ity between two structurally identical environments, fur-
ther emphasizing the importance of integrating seman-
tics into the localization process. Note that we consider
two depth rays to be identical if they differ by less than
10 cm.

In Figure 5 we illustrate the impact of different Top-
K selections on localization accuracy. In many cases,
especially in environments with repetitive patterns, the
Top-1 candidate does not necessarily correspond to the
correct prediction (as can also be seen quantitatively in
Figure 2).

Figure 4. Semantic and Depth Ray Differences. The Y-axis
represents the percentage of samples, and the X-axis indicates
the number of ray differences between the top candidate (K0)
and the best candidate, with depth differences shown in green
and semantic differences in red.

Figure 5. Illustrative examples of the impact of repetitive pat-
terns on localization accuracy. This figure demonstrates diffi-
cult cases where, despite accurate semantic and depth predic-
tions, floorplan localization remains challenging. The identical
depth and semantic patterns may result in the top score not cor-
responding to the ground truth location, which motivates our
analysis of Top-K recall.

In Table 3, we observe numerically that recall im-
proves drastically as we compute recall within the Top-
K candidates. This indeed indicates that our pipeline
strongly captures the true location of the images within
the top results, but it still remains a challenge to extract
the correct location.

2.4. Ablation on Recall With Different δres

As shown in Table 4, the refinement threshold δres plays
a critical role in balancing fine and coarse localization
accuracy. In particular, when using a lower δres value
(0.05 m), we observe a significant improvement at the
fine accuracy threshold (0.1 m), achieving a recall of
18.40%. In contrast, a higher δres value (0.5 m) yields
better performance at the coarser thresholds (0.5 m, 1 m,
and 1 m 30◦). This demonstrates the benefit of customiz-
ing the refinement process to meet specific application
needs, thereby making it a flexible procedure.



Top K 0.1m 0.5m 1m 1m 30°
Top 2 7.45 57.55 70.75 69.45
Top 3 7.85 63.60 78.98 76.65
Top 5 8.82 69.18 85.69 83.18

Table 3. Recall metrics for different K values evaluated on the
S3D dataset. Recall is defined as the percentage of samples for
which the ground truth location is within a specified distance
threshold of at least one of the Top K candidate locations ex-
tracted from the probability volume. Higher K values lead to
improved recall, as more candidate locations are considered.
For this experiment, we exclude the room-aware module to
specifically isolate the effect of the refinement module.

δres (m) 0.1 m 0.5 m 1 m 1 m 30◦

0.05 18.40 63.02 71.60 70.08
0.2 12.94 64.37 73.14 71.57
0.5 8.84 67.07 77.25 75.33
1 7.85 63.60 78.98 76.65

Table 4. Recall performance on the S3D dataset for candidate
refinement using the Top 3 candidates. Recall is defined as the
percentage of test instances for which at least one of the Top
3 refined candidate poses falls within the specified distance
thresholds (0.1 m, 0.5 m, 1 m) and within a 30° orientation tol-
erance at 1 m, evaluated under different δres values.

2.5. Integrating Our Refinement into F3Loc
Table 5 quantifies the impact of our refinement module
on the baseline F3Loc across both the S3D and ZInD
datasets. By incorporating the refinement stage, F3Loc’s
recall gains substantial improvements in every thresh-
old (e.g., R@1 m30° on S3D rises from 21.3 to 29.6),
demonstrating that our refinement module is indeed ef-
fective and substantially enhances localization perfor-
mance. However, even with refinement, F3Loc+Refine
still falls short of the recall achieved by our full method
(both with and without room-aware predictions), which
underlines that the semantics awareness of our method
achieves significant gains beyond what geometric refine-
ment alone can provide.

3. Additional Experiments and Analysis
3.1. Probability Volume Fusing Weights
In our approach, the structural-semantic probability vol-
ume is obtained by fusing the depth and semantic prob-
ability volumes:

Pc = ws · Ps + wd · Pd,

where wd and ws denote the weights assigned to depth
and semantic cues, respectively. We determine the opti-
mal weight configuration by evaluating recall metrics on

S3D R@

Method 0.1m 0.5m 1m 1m 30°

F3Loc 1.5 14.6 22.4 21.3
F3Loc + Refine 2.74 23.29 30.74 29.59
Ourss 5.42 41.87 53.52 52.61
Oursr 5.70 45.53 58.78 57.49

ZInD R@

Method 0.1m 0.5m 1m 1m 30°

F3Loc 0.67 7.90 15.07 11.46
F3Loc + Refine 1.21 10.46 16.94 14.21
Ourss 2.98 24.00 33.96 29.30
Oursr 3.31 26.60 38.01 31.86

Table 5. Recall performance on the S3D and ZInD datasets.
The table reports recall at thresholds of 0.1 m, 0.5 m, 1 m, and
1 m with a 30° orientation tolerance for the baseline F3Loc
with and without our refinement module.

the validation sets. Below, we report our experiments on
the S3D and ZInD datasets.

As in the main paper, all experiments use a floor-
plan resolution of 0.1 m and an angular granularity of
10◦. Specifically, we predict 40 rays per image and in-
terpolate these to 9 rays during the coarse stage of lo-
calization. For the Location Extraction module, we set
δres = 0.05m, δang = 5◦, and ∆max = 10◦, and report
results using Top K = 5 candidates.

3.1.1. Performance Breakdown on the S3D Dataset
Table 6 presents a consolidated view of recall perfor-
mance for various weight configurations on the S3D val-
idation set. Based on these results, we selected wd = 0.6
and ws = 0.4 as our final configuration, as it yielded the
best overall performance over the validation split.

Weights 0.1 m 0.5 m 1 m 1 m 30◦

wd ws

1.0 0 2.83 22.31 30.27 29.05
0.9 0.1 4.79 34.71 44.33 43.56
0.8 0.2 5.19 38.04 48.82 48.03
0.7 0.3 5.20 38.68 49.83 49.02
0.6 0.4 4.93 39.22 50.16 49.48
0.5 0.5 5.17 38.31 49.44 48.64
0.4 0.6 4.96 37.43 48.68 47.89
0.3 0.7 4.52 36.29 47.56 46.46
0.2 0.8 4.21 35.01 45.66 44.55
0.1 0.9 4.29 34.40 44.49 43.45
0 1.0 0.11 3.60 8.93 7.27

Table 6. Recall metrics on the S3D validation set obtained with
our model without room aware and refinement.



3.1.2. Performance Breakdown on the ZInD Dataset
Table 7 shows the recall performance on the ZInD vali-
dation set for different weight configurations. For this
dataset, the configuration wd = 0.4 and ws = 0.6
achieved the best overall performance.

Weights 0.1 m 0.5 m 1 m 1 m 30◦

wd ws

1.0 0 0.83 8.95 14.45 11.85
0.9 0.1 1.13 13.14 20.53 18.07
0.8 0.2 1.28 15.21 23.57 20.96
0.7 0.3 1.53 16.61 25.69 22.90
0.6 0.4 1.56 16.88 26.07 23.58
0.5 0.5 1.51 16.74 26.37 23.31
0.4 0.6 1.38 16.90 26.86 23.87
0.3 0.7 1.31 16.38 26.39 23.67
0.1 0.9 1.22 16.16 25.81 22.97
0 1.0 0.04 1.83 5.25 3.04

Table 7. Recall metrics on the ZInD validation set obtained
with our model without room aware and refinement.

3.2. Room Type Classification Results
In this section, we evaluate the performance of our room
type prediction branch on two datasets: S3D (3.2.1) and
ZInD (3.2.2). Accurate room type classification not only
provides semantic context for localization but also re-
duces the effective search space for image matching.

3.2.1. Room Type - S3D
On the S3D dataset, which consists of fully furnished en-
vironments, our model achieves a room type prediction
accuracy of 72.1%. A major source of misclassifications
stems from uninformative images and rooms lacking
furniture, which are common in the dataset. As shown in
Figure 6, correct predictions generally exhibit high con-
fidence scores (greater than 0.8), whereas misclassifica-
tions tend to display a more uniform confidence distri-
bution across incorrect labels. Based on these observa-
tions, we set our threshold Troom = 0.8: any prediction
with a confidence score lower than 0.8 is rejected. This
strategy limits misclassifications and effectively narrows
the search space, resulting in an average improvement
of 6.2% across the 0.5m, 1m, and 1m 30◦ thresholds, as
seen from the gap between Ourss and Oursr. Notably,
on the 1m 30◦ metric, the improvement is 3.74 percent-
age points.

Figure 7 illustrates the overall room type distribution
in the S3D dataset. Notably, bedrooms dominate the
dataset, with an average of three per floorplan. Although
this narrows the search space, it does not isolate a sin-
gle room type. Furthermore, our analysis reveals that
the areas corresponding to room labels account for only

Figure 6. Room type prediction branch confidence scores over
the S3D dataset. Correct predictions (green, left side) show
high confidence, while incorrect predictions (red, right side)
are more uniformly distributed.

27.6% of the total apartment area. This means that, on
average, if true room labels were available, the effec-
tive area to be searched would be reduced to just 27.6%
of the full apartment, significantly narrowing the search
space for image localization.

Figure 7. Overall room type distribution in the S3D dataset.
Each column indicates the total number of rooms with the cor-
responding label and their percentage out of all rooms.

3.2.2. Room Type - ZInD

For the ZInD dataset, the prediction accuracy drops sig-
nificantly to 45%. This lower accuracy can be attributed
to the unfurnished nature of the dataset, which results in
many ambiguous room images, and to the large number
(over 250) and inconsistency of room labels. To address
these issues, we grouped similar labels (e.g., “bedroom
-1”, “primary bedroom”, “main bedroom”) into a sin-
gle category. After grouping, we selected the top 15
room labels and classified all remaining labels as un-
defined (thereby excluding sparse categories). Although
the gain from incorporating room predictions on the 1m
30° metric in ZInD is 2.11 percentage points, lower than
that observed in S3D, it still constitutes a significant en-
hancement in narrowing the search space for image lo-
calization.



3.3. Effects of Refinement Parameter Choices
In Table 8 we present an experiment on the S3D vali-
dation set, comparing baseline methods with refinement
results across various configurations. From this table,
we selected the best score and used its corresponding
parameters for evaluation on our test set.

Method dist alpha Top-K R@0.1m R@0.5m R@1m R@1 m 30◦

Baseline 0.1 0.1 3 0.055 0.417 0.545 0.533
Refine 0.1 0.1 3 0.049 0.432 0.566 0.553
Baseline 0.1 0.1 5 0.054 0.416 0.547 0.535
Refine 0.1 0.1 5 0.047 0.426 0.564 0.553
Baseline 0.1 0.3 3 0.054 0.420 0.548 0.537
Refine 0.1 0.3 3 0.049 0.437 0.570 0.557
Baseline 0.1 0.3 5 0.050 0.409 0.539 0.528
Refine 0.1 0.3 5 0.052 0.428 0.563 0.551
Baseline 0.1 0.5 3 0.050 0.413 0.539 0.528
Refine 0.1 0.5 3 0.051 0.430 0.563 0.551
Baseline 0.1 0.5 5 0.053 0.417 0.544 0.532
Refine 0.1 0.5 5 0.052 0.435 0.564 0.553
Baseline 0.5 0.1 3 0.054 0.413 0.541 0.530
Refine 0.5 0.1 3 0.046 0.377 0.542 0.528
Baseline 0.5 0.1 5 0.055 0.413 0.538 0.526
Refine 0.5 0.1 5 0.042 0.350 0.527 0.513
Baseline 0.5 0.3 3 0.054 0.420 0.547 0.536
Refine 0.5 0.3 3 0.053 0.392 0.552 0.539
Baseline 0.5 0.3 5 0.055 0.417 0.543 0.531
Refine 0.5 0.3 5 0.046 0.372 0.535 0.522
Baseline 0.5 0.5 3 0.053 0.414 0.546 0.533
Refine 0.5 0.5 3 0.050 0.388 0.546 0.533
Baseline 0.5 0.5 5 0.051 0.412 0.540 0.529
Refine 0.5 0.5 5 0.048 0.370 0.536 0.523
Baseline 1.0 0.1 3 0.054 0.420 0.552 0.540
Refine 1.0 0.1 3 0.050 0.358 0.496 0.484
Baseline 1.0 0.1 5 0.052 0.413 0.541 0.530
Refine 1.0 0.1 5 0.042 0.321 0.455 0.444
Baseline 1.0 0.3 3 0.054 0.414 0.542 0.531
Refine 1.0 0.3 3 0.053 0.382 0.516 0.504
Baseline 1.0 0.3 5 0.052 0.412 0.543 0.531
Refine 1.0 0.3 5 0.053 0.369 0.504 0.492

Table 8. Refinement parameter experiment on the S3D valida-
tion set.

3.4. Additional Comparison with LASER
Table 9 compares our approach with the LASER base-
line. To ensure a fair evaluation, we train our model un-
der the same protocol as LASER, applying random yaw
perturbations to the panoramas during training. We then
evaluate both methods on the test set—using the same
random yaw sampling—and report the mean recall over
five independent runs. Our method significantly outper-
forms LASER at the 1 m and 1 m 30◦ thresholds; in par-
ticular, we achieve a 64% absolute improvement on the
1 m 30◦ metric, which is the most critical measure for
our application. LASER, however, attains higher recall
on the fine localization metrics (0.1 m), suggesting that
given a large training set, their model can achieve finer-
grained accuracy. We observe that the scores for the
dataset when randomly cropping panoramas are lower
than those for the perspective sets. Two factors con-
tribute to this gap: (i) under random-yaw training, a
larger fraction of panorama crops contain uninformative
wall-only views, making localization harder. And (ii)

in the S3D dataset the resolution of a cropped panorama
view is much lower than that of an image covering the
same field of view in the perspective dataset—e.g., ap-
proximately 228 × 512 px versus 1280 × 720 px. Both
the reduced visual content and the lower image quality
adversely affect model performance on the panorama
random yaw crop. With these results, we consider the
LASER baseline to be faithfully reproduced.

Method 0.1 m 0.5 m 1 m 1 m 30◦

LASER 6.48 25.75 31.05 22.57
Ourss 3.12 23.84 32.34 29.52
Oursr 4.33 31.12 42.49 37.13

Table 9. Recall metrics on the S3D dataset, with a random yaw
in the training stage. Results are reported on the random angle
of yaw of each panorama in the test set and averaged over N =
5 times.

3.5. Comparison against Soft Constraints
Our approach uses hard thresholds both for semantic
ray classification—where we assign each ray the class
with the highest probability—and for room-type se-
lection—where we apply a binary mask for the room
with the maximum confidence. To validate this hard-
threshold strategy against a soft-constraint alternative,
we conduct two experiments: (1) Semantic Ray Clas-
sification compares hard vs. soft ray assignments, and
(2) Room-Type Selection compares hard vs. soft room-
type classifications. Results are reported in Table 10 and
Table 11

3.5.1. Semantic Ray Classification
For semantic ray classification, instead of selecting the
highest-probability class for each ray (hard assignment),
we retained the logits and computed a probability map
by measuring cross-entropy with the ground truth (soft
assignment). This soft approach caused a dramatic de-
crease in all recall metrics (e.g., R@1 m 30◦ dropped to
25.88% on S3D), demonstrating that hard assignments
are crucial for aggregating semantic information in our
network.

Method 0.1 m 0.5 m 1 m 1 m 30◦

Hard Ourss 5.42 41.87 53.52 52.61
Hard Oursr 5.70 45.53 58.78 57.49
Soft Ourss 1.94 16.74 26.22 22.66
Soft Oursr 2.24 19.55 31.43 25.88

Table 10. Recall metrics on the S3D dataset for semantic ray
classification under hard vs. soft assignments (Experiment 1).
The top result in each column is bolded.



3.5.2. Room-Type Selection
For room-type selection, we compared a hard classi-
fication approach—where each room polygon receives
a binary mask from the maximum-probability predic-
tion—to a soft classification approach, in which each
room polygon is weighted by its predicted probabil-
ity. Although the gap is modest, hard classification
still outperforms the soft approach (e.g., 1.23% gap in
R@1 m 30◦ on S3D).

Method 0.1 m 0.5 m 1 m 1 m 30◦

Hard Ourss 5.70 45.53 58.78 57.49
Soft Oursr 4.55 43.57 58.51 56.27

Table 11. Recall metrics on the S3D dataset for room-type
selection under hard vs. soft classification (Experiment 2). The
top result in each column is bolded.

4. Additional Visualizations
4.1. Qualitative Visualizations
In this section, we show more visual examples from our
predictions on both datasets. Figure 8 presents several
successful examples from the S3D dataset, illustrating
how combining precise semantic information with struc-
tural data can yield accurate localizations. We added
an interpolated line, colored by each ray’s semantic la-
bel, connecting the ray endpoints to make interpolation
easier. Figure 9 further demonstrates our predictions on
the ZInD dataset. In both figures, warmer colors corre-
spond to higher probabilities, with magenta indicating
the ground-truth location and white denoting our pre-
dicted layout. The strong similarity between the ground-
truth rays and the predicted rays underlines the effective-
ness of our method.

4.2. Visualization of Baseline Comparisons
Here, we present additional examples comparing our
method against baseline approaches, specifically F3Loc
and LASER, on the ZiND dataset. More visual exam-
ples of these comparisons are shown in Figure 10.

5. Limitations
Figure 11 illustrates several failure cases from both of
the datasets where our approach struggles. In these ex-
amples, misclassifications of certain semantic labels or
confusions between visually similar features, such as in-
terpreting a window as a door (row 1) or mistaking the
window size (row 3), can lead to localization errors. The
figure displays both the ground truth rays and the pre-
dicted rays, highlighting the differences and emphasiz-
ing the critical role of precise semantic inference for ro-
bust indoor localization.

These limitations suggest that improvements in se-
mantic segmentation and more sophisticated feature
disambiguation techniques could enhance performance.
We believe that addressing these issues can lead to fur-
ther improvements in localization accuracy in future
work.
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Figure 8. Additional Qualitative Results (S3D dataset): Warmer colors correspond to higher probabilities, while magenta indi-
cates the ground-truth location and white denotes our predicted layout. Rays are: wall, window, and door.
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Figure 9. Additional Qualitative Results (ZInD dataset): Warmer colors correspond to higher probabilities, while magenta
indicates the ground-truth location and white denotes our predicted layout. Rays are: wall, window, and door.
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Figure 10. Comparison to Baseline Methods: Additional visualizations comparing our method with F3Loc and LASER on the
ZiND dataset. Warmer colors correspond to regions with higher predicted probabilities. Overlaid on the estimated probabilities,
we indicate the ground truth location (magenta) and the predicted location. Rays are: wall, window, and door.
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Figure 11. Limitations. Above we show several failure cases, where semantic misclassifications and structural ambiguities lead
to localization errors; see Section 5 for additional details. Warmer colors again represent higher probabilities. Magenta marks the
ground truth, and white indicates the estimated layout. Rays are: wall, window, and door.


