
A. Theoretical Analysis

Overview

In this appendix, we provide detailed theoretical ar-
guments to explain:
• Why Gradient Short-Circuit is Effective for

OOD Detection (Appendix A.1),
• Why Local First-Order Approximation Does

Not Degrade Performance (Appendix A.2),
• Why Their Combination Achieves Both Accu-

racy and Efficiency (Appendix A.3),
• Why Gradient Short-Circuit is Fisher-Optimal

for OOD Detection (Appendix A.4).
The notation (F, y, g, etc.) follows Section 3 of the
main text.

A.1. Why Gradient Short-Circuit is Effective for
OOD Detection

A.1.1 OOD Reliance on a Small Set of High-
Gradient Coordinates

Given a trained model f = f>L ◦ f≤L, for an input
x ∈ Rn, we write

F = f≤L(x) ∈ Rd, y = f>L(F) ∈ RK .

Let
c = argmax

j
[y]j . (7)

We define the gradient vector g ∈ Rd by

g = ∇F [y]c. (8)

Sparsity Hypothesis for OOD. Suppose an OOD
sample’s high confidence stems from a small subset
of coordinates in F. Formally, let I ⊂ {1, . . . , d}
be such that ∣∣ [y]c∣∣ ≈ ∣∣ [y]c∣∣∣∣∣

coords in I
. (9)

That is, removing the dimensions in I would dras-
tically reduce the logit [y]c. Since g indicates the
sensitivity of [y]c to each Fi, the largest |gi| values
often identify this critical subset I. Hence, OOD in-
puts are particularly vulnerable to interventions on
those few coordinates where |gi| is largest.
Derivation Sketch. We focus on showing how a
small subset of coordinates can dominate [y]c(F).
Denote the logit of interest by

L(F) = [y]c(F), (10)

and consider a local linear approximation of L
around F. Let ∆F ∈ Rd be a small perturbation

to F. Then, by the first-order expansion, we have

L(F+∆F) ≈ L(F) + ∇F L(F) · ∆F. (11)

Since ∇F L(F) = g, we rewrite (11) as

L(F+∆F) ≈ L(F) + g⊤ ∆F. (12)

If there exists a small set I such that the coordinates
{Fi}i∈I (and corresponding {gi}i∈I) dominate the
dot product g⊤F, then

g⊤ F =

d∑
i=1

gi Fi ≈
∑
i∈I

gi Fi. (13)

That is, ignoring (or zeroing) the coordinates outside
I has little effect on g⊤F. But if we remove (nul-
lify) {Fi}i∈I , the value of g⊤F decreases signifi-
cantly, implying a large drop in L(F) under the lo-
cal approximation. Hence, by identifying I through
the largest |gi| (or equivalently largest |gi Fi|), we
can pinpoint the “fragile” coordinates on which the
OOD logit depends.
Concretely, if we define a masked feature

F ′
i =

{
0, i ∈ I,
Fi, otherwise,

(14)

then

∆F = F′ − F

=⇒ L(F′) ≈ L(F) + g⊤ (F′ − F).

Since F′
i − Fi = −Fi for i ∈ I, the above becomes

L(F′) ≈ L(F) −
∑
i∈I

gi Fi. (15)

For OOD samples, if
∑

i∈I gi Fi accounts for a
large portion of L(F), then zeroing exactly those co-
ordinates causes a dramatic logit reduction.

Key Statement (A.1.1): For many OOD sam-
ples, most of the “logit mass” is concentrated
in a small set of coordinates. The gradient g
reveals these coordinates because it measures
how sensitively each dimension affects [y]c.



A.1.2 Detailed Reasoning: Nullifying or Scaling
High-Gradient Coordinates

Consider zeroing out the top-k coordinates of F (as
measured by |gi|). Let Ik ⊂ {1, . . . , d} be the in-
dices of those largest magnitudes. Define

F ′
i =

{
0, if i ∈ Ik,
Fi, otherwise.

(16)

Then F′ = (F ′
1, F

′
2, . . . , F

′
d) and ∆F = F′−F. By

a first-order expansion around F, we approximate

[y]c(F
′) ≈ [y]c(F) +

d∑
i=1

gi (F
′
i − Fi)

= [y]c(F) −
∑
i∈Ik

gi Fi. (17)

If Ik covers the key OOD-supporting coordinates,
then

∑
i∈Ik

gi Fi is large (in positive magnitude),
so removing them triggers a big logit drop.
Partial Scaling. More generally, scaling by β < 1:

F ′
i =

{
β Fi, i ∈ Ik,
Fi, otherwise,

gives

[y]c(F
′) ≈ [y]c(F) − (1− β)

∑
i∈Ik

gi Fi.

Thus even moderate scaling can achieve a large re-
duction in [y]c.

Key Statement (A.1.2): By zeroing or scaling
the coordinates with largest gradients, we re-
move the core “support” of OOD logit infla-
tion. This is why OOD confidence often col-
lapses after short-circuiting, whereas ID sam-
ples—having more spread-out features—are
less affected.

A.1.3 ID Robustness: Multi-Dimensional Feature
Support

Unlike OOD samples, an ID sample’s logit typi-
cally relies on a broader set of coordinates, mak-
ing it more resilient when a small fraction of those
coordinates is zeroed or scaled. Formally, let Ω ⊂
{1, . . . , d} be the “essential support” of the ID sam-
ple for the predicted class c. That is, under a local

linear approximation around F,

[y]c(F) ≈
∑
i∈Ω

gi Fi, with |Ω| = M, (18)

where M is the number of significant coordinates
contributing to [y]c. Suppose we remove (or scale)
only k coordinates, with k ≪ M . We show below
that the resulting decrease in [y]c remains limited,
indicating robustness for ID samples.
A Bounding Argument. Assume each coordinate
i ∈ Ω has a bounded share of the total logit contri-
bution. For instance, suppose there is some α > 0
such that

| gi Fi| ≤ α
∑
j ∈Ω

| gj Fj | for all i ∈ Ω. (19)

If α ≪ 1 and |Ω| = M is large, each coordinate
in Ω captures only a small portion of the total logit.
Consequently, removing or shrinking k coordinates
(say, Ik ⊂ Ω) can remove at most αk fraction of∑

j∈Ω |gjFj |, implying∣∣ ∑
i∈Ω\Ik

gi Fi

∣∣ ≥ ∣∣∑
i∈Ω

gi Fi

∣∣ − ∑
i∈Ik

| gi Fi|

≥ (1− αk)
∣∣∑
i∈Ω

gi Fi

∣∣. (20)

Hence, as long as k ≪ 1/α, we preserve most of
the ID logit contribution. Under the same local ap-
proximation used in (18), this means [y]c(F′) does
not significantly decrease.
Lipschitz Continuity. Even if ∥∆F∥ is not strictly
zero, but small or restricted to few coordinates, a
Lipschitz condition on f>L ensures the final logit
cannot drop too much. That is, if

∥F′ − F∥ = ∥∆F∥ is small,

then the change in [y]c remains bounded by a con-
stant factor of ∥∆F∥.
Putting It All Together. Thus, if an ID sample’s
support Ω is sufficiently large and each coordinate’s
influence remains moderate, removing (or scaling)
a few coordinates in Ik

(
k ≪ |Ω|

)
reduces [y]c by

only a small fraction. As a result, ID classification
stays largely intact, in stark contrast to OOD sam-
ples, whose logit can be significantly cut down by a
similar operation.



Key Statement (A.1.3): If an ID logit is spread
among many dimensions in F, then removing
k ≪ |Ω| coordinates only minimally decreases
[y]c. This preserves ID classification perfor-
mance while clearly lowering OOD confidence.

A.2. Why Local First-Order Approximation Does
Not Degrade Performance

A.2.1 Taylor Expansion around (F)

After short-circuiting, the new feature is F′ = F +
∆F. Let

y′ = f>L(F
′), and y = f>L(F).

By Taylor’s theorem, each component [y]j(F′) can
be written as

[y]j(F+∆F) = [y]j(F) +
[
∇F (yj)(F)

]⊤
∆F

+
[
R2(∆F)

]
j
,

(21)
where R2(∆F) denotes second-order and higher-
order terms. Hence the local first-order approxima-
tion amounts to

[y′]j ≈ [y]j +
[
∇F (yj)

]⊤
∆F, (22)

discarding
[
R2(∆F)

]
j
.

Vector Form. In compact notation,

y′
approx = y +

(
∇F y

)⊤
∆F.

This is precisely what we compute in Eq. (6) of Sec-
tion 3.

A.2.2 Bounding the Second-Order Remainder

A common assumption is that f>L is Lipschitz-
smooth around F, meaning∥∥∇Ff>L(F1)−∇Ff>L(F2)

∥∥
≤ Lsmooth ∥F1 − F2∥
∀F1,F2 near F.

(23)

Under this, standard remainder estimates yield

∥R2(∆F)∥ ≤ 1
2 Lsmooth ∥∆F∥2. (24)

Thus if short-circuit only alters a small number of
coordinates or applies a small factor, then ∥∆F∥ is
limited, which keeps ∥R2(∆F)∥ small.

Approximation Error for y′. Hence, the difference
between the exact y′ and our approximation y′

approx

satisfies:

∥y′ − y′
approx∥ ≤ ∥R2(∆F)∥

≤ 1
2 Lsmooth ∥∆F∥2.

(25)

For typical short-circuit operations (removing or
scaling only top-k coordinates), ∥∆F∥ remains
moderate, so ∥y′ − y′

approx∥ is very small in prac-
tice.

Key Statement (A.2.2): If short-circuiting
modifies few coordinates, then the resulting
∆F is small. Under Lipschitz-smoothness, the
second-order term is bounded by O(∥∆F∥2),
so the first-order logit approximation is highly
accurate.

A.2.3 Ensuring Stable OOD-vs-ID Decisions

For OOD detection, we often use a score function
S(y′), such as the energy:

E(y′) = log
( K∑

j=1

exp([y′]j)
)
,

or the maximum softmax probability:

Pmax(y
′) = max

j

exp
(
[y′]j

)∑K
k=1 exp

(
[y′]k

) .
Both of these are (sub-)Lipschitz in the logit space
y′. Thus, when ∥y′ − y′

exact∥ is small, the fi-
nal scalar score S(y′) remains close to S(y′

exact).
Consequently, any threshold-based decision (ID vs.
OOD) changes little, if at all.
Bounding Argument for the Energy Score. Let
a,b ∈ RK be two logit vectors. Define

E(a) = log
( K∑
j=1

eaj

)
.

A known result is that E(a) is 1-Lipschitz under the
ℓ∞ norm; namely,∣∣E(a) − E(b)

∣∣ ≤ ∥a− b∥∞. (26)

Proof Sketch. Observe

E(a)− E(b) = log
(∑

j eaj∑
j ebj

)
= log

(∑
j

e aj−bj
)
− log

(∑
j

e0
)
.

(27)



If ∥a−b∥∞ ≤ δ, then aj − bj ∈ [−δ, +δ] for each
j. Hence∑

j

eaj−bj ∈
[
e−δK, e+δK

]
,

so log(
∑

j e
aj−bj ) ∈ [log(Ke−δ), log(Keδ)]. Tak-

ing the difference, one obtains
∣∣E(a) − E(b)

∣∣ ≤
δ. By extension, if we work under ℓ2 norm but
∥a − b∥2 ≤ ϵ and dimension K is not excessively
large, a similar argument implies a small change in
E.
Application to Our Setting. Let y′

exact =
f>L(F

′) be the exact logit after short-circuiting, and
y′
approx = y + (∇Fy)

⊤∆F its local first-order ap-
proximation (see (22) and (25)). From ∥y′

exact −
y′
approx∥ ≤ 1

2Lsmooth∥∆F∥2, it follows that∣∣E(y′
exact) − E(y′

approx)
∣∣ ≤ ∥y′

exact − y′
approx∥∞

(by (26)),

and thus remains small if ∥∆F∥ is limited.
Threshold-Based Decision Stability. In typical
OOD detection, one sets a threshold τ on E(y′)
(or on maxj softmax([y′]j)). If E(y′) > τ , the
sample is classified as ID; otherwise OOD. When∣∣E(y′

exact)−E(y′
approx)

∣∣ is smaller than the margin
δ between E(y′

exact) and the threshold, the classifi-
cation decision remains unchanged. A similar argu-
ment applies to other scoring functions (e.g. maxi-
mum softmax).

Key Statement (A.2.3): A small logit dif-
ference implies a small change in energy or
softmax-based scores, which in turn preserves
the ID/OOD decision.

A.3. Why Their Combination Achieves Both Accu-
racy and Efficiency

A.3.1 Synergy: Fragile OOD + Small ∥∆F∥

Recall from Appendix A.1 that OOD samples ex-
hibit a “fragile” dependence on a few high-gradient
coordinates. Removing or scaling only k ≪ d such
coordinates can cause a major drop in the logit:

[y]c(F
′) ≈ [y]c(F) −

∑
i∈Ik

gi Fi, (28)

where Ik ⊂ {1, . . . , d} indexes the top-k gradient
coordinates. Consequently,

∆F = F′ − F

tends to have a small norm (only k entries differ
from zero or are scaled), i.e., ∥∆F∥ ≪ ∥F∥. By
Lipschitz-smoothness (Appendix A.2), the second-
order remainder term ∥R2(∆F)∥ is thus bounded by
1
2 Lsmooth∥∆F∥2, which remains small for modest
∥∆F∥. Hence the local first-order approximation
accurately predicts

y′ = f>L

(
F′)

without a second forward pass, as seen in Eq. (25).

∥y′ − y′
approx∥ ≤ 1

2 Lsmooth ∥∆F∥2

=⇒ small if ∥∆F∥ is small.
(29)

Since F′ differs from F in few coordinates, ∥∆F∥
stays small, yielding a negligible approximation er-
ror.

Key Statement (A.3.1): A small yet well-
chosen ∆F (zeroing/scaling top-k gradient co-
ords) sharply reduces OOD logit while keep-
ing the second-order term small. This ensures
the first-order logit approximation remains ac-
curate.

A.3.2 Complexity Perspective: One Backward vs.
Two Forwards

Naı̈ve Approach. A straightforward method to find
the post-short-circuit output would be:

y′
exact = f>L

(
F′), (30)

implying two forward passes on f>L:

(i) F 7→ f>L(F) and (ii) F′ 7→ f>L(F
′).

For large CNNs or Transformers, the second for-
ward can be expensive, incurring roughly

2Ω(Forward>L),

where Ω(Forward>L) denotes the time/space com-
plexity of a single forward through the latter part of
the network.
Our Proposed Approach: One Backward + One
Dot Product. Instead, we do:



1. Forward x 7→ F 7→ y: cost Ω(Forward>L).
2. Backward y 7→ g: compute g = ∇F [y]c, cost

Ω(Backward>L).
3. Local Approx: y′

approx ≈ y + (∇Fy)
⊤(F′−

F), cost O(d).
Hence the total is

Ω(Forward>L) + Ω(Backward>L) + O(d).

In many networks, Ω(Forward>L) ≈
Ω(Backward>L). Compared to the naive ap-
proach 2Ω(Forward>L), we reduce overhead by
roughly half, ignoring the relatively minor O(d)
dot-product cost.

Ω(Forward>L) + Ω(Backward>L) +O(d)︸ ︷︷ ︸
Our approach

vs. 2 Ω(Forward>L)︸ ︷︷ ︸
Two forwards

.

(31)
When d is not huge or we have efficient paralleliza-
tion for the dot product, Ω(d) is negligible relative
to a deep network pass.

Key Statement (A.3.2): Instead of two forward
passes, we do one forward & one backward
plus an O(d) dot product. This cuts inference
cost by about half while retaining strong OOD
detection performance.

Conclusion: Synergistic Benefits

By combining Gradient Short-Circuit and Local
First-Order Approximation, we achieve two signifi-
cant benefits:
1. Accuracy: We exploit OOD samples’ fragile re-

liance on a small subset of coordinates, gener-
ating a minimal perturbation ∆F that collapses
OOD confidence.

2. Efficiency: We skip a second forward pass
through f>L, approximating y′ via a lightweight
dot product.

As a result, our combined strategy excels in both
accuracy (major OOD suppression) and efficiency
(time-saving at inference). Empirical results con-
firm this synergy in practice.

A.4. Why Gradient Short-Circuit is Fisher-Optimal
for OOD Detection?

In this subsection, we provide an additional theoretical in-
terpretation of Gradient Short-Circuit (GSC) by connecting
it to the Fisher information matrix in a local neighborhood
of the high-level feature F. We show that, under a natural
Fisher-based constraint, short-circuiting constitutes an opti-
mal OOD decision boundary—further reinforcing its theo-
retical soundness.

A.4.1 Fisher Information and Sensitivity

Recall that in Section 3, we consider a model
f(x) = f>L

(
f≤L(x)

)
, where F = f≤L(x) ∈ Rd

is the feature representation for input x. For sim-
plicity, let us fix a predicted class c (see Eq. (7)) and
write the corresponding logit as

L(F) = [y]c(F) =
[
f>L(F)

]
c
.

Fisher Information Matrix (Local Form). The
Fisher information matrix I(F) can be loosely
viewed as a Hessian (second derivative) of the neg-
ative log-likelihood around F. When F is treated as
the “parameter-like” quantity of interest (instead of
the network weights), a local Fisher approximation
typically takes the form

I(F) = Ep(x|F)

[
∇Fℓ(F) ∇Fℓ(F)

⊤], (32)

where ℓ(F) is the loss (e.g., cross-entropy) and the
expectation is taken w.r.t. local perturbations of x
that map into a neighborhood of F. In practice, one
can think of I(F) as encoding how sensitively the
model’s prediction changes when F is varied, fo-
cusing on second-order information.

Connecting Fisher Information to Gradient
Short-Circuit. Recall the GSC rule in Section 3.2
selectively modifies feature coordinates with large
gradient magnitudes |gi|. Intuitively, coordinates
that yield high partial derivatives ∂L

∂Fi
can also be in-

terpreted as directions in which the model’s predic-
tive distribution is highly sensitive. In many cases,
the largest eigenvalues of I(F) align with these sen-
sitive directions, since I(F) ≈ ∇Fℓ(F)∇Fℓ(F)

⊤

for local Gaussian approximations around F. Thus,
restricting or “short-circuiting” these directions is
closely related to reducing the dominant compo-
nents in the Fisher space.



A.4.2 Optimality as a Fisher-Constrained Ob-
jective

We now show that under mild assumptions, apply-
ing Gradient Short-Circuit can be viewed as solving
a Fisher-constrained optimization problem for OOD
detection. Consider the following stylized objective:

min
∆F

L(F+∆F) subject to ∆F⊤ I(F)∆F ≤ κ,

(33)
where κ > 0 is a small budget on how much we
can move within the “Fisher ellipse” around F. In
other words, we want to reduce the logit L(F) (thus
lowering confidence) by altering the feature vector
F in directions that remain bounded under the Fisher
metric I(F).

Interpreting the Constraint. The constraint
∆F⊤ I(F)∆F ≤ κ imposes that we do not venture
far in directions of high model sensitivity. In
classical parameter-estimation terms, steps that sig-
nificantly increase ∆F⊤ I(F)∆F would drastically
alter the local log-likelihood geometry.

Gradient Short-Circuit as a Solution. When
I(F) is (approximately) diagonal and the largest en-
tries lie along coordinates {i : |gi| is large}, the
feasible region of ∆F reduces to preserving co-
ordinates with large Fisher penalty while allowing
changes in those with lower penalty. This aligns
well with the GSC rule that zeroes/scales the top-k
coordinates with largest gradient magnitude. In fact,
as we show below in Theorem A.4, under certain di-
agonal assumptions, ∆F that disables the highest-
gradient coordinates exactly solves the minimization
in Eq. (33).

A.4.3 Theorem and Proof of Optimal OOD De-
cision Boundary

Below, we give a formal statement of optimal-
ity for Gradient Short-Circuit under a Fisher-based
model of local perturbations. This result justifies
why short-circuiting can be viewed as searching for
the optimal OOD decision boundary given limited
Fisher “budget.”

Theorem A.4.1

(Optimality of Gradient Short-Circuit under
Fisher Constraints) Let L(F) be the logit of
the predicted class c as in (7), and let g =
∇F L(F). Suppose:
1. I(F) is diagonal and satisfies I(F) =

diag(λ1, . . . , λd) with λi > 0.
2. The budget constraint is ∆F⊤ I(F)∆F ≤

κ.
3. We consider small perturbations ∥∆F∥ so

that L(F+∆F) ≈ L(F) + g⊤∆F.
Then the solution that minimizes L(F + ∆F)
subject to the Fisher constraint is given by nulli-
fying or scaling the top-k coordinates of F with
largest |gi|/

√
λi. In particular, Gradient Short-

Circuit implements this solution by zeroing or
shrinking those coordinates with maximal |gi|
weighted by λi.

Proof of Theorem A.4.

Proof. Under the diagonal Fisher assumption, the
constraint ∆F⊤I(F)∆F ≤ κ reduces to

d∑
i=1

λi (∆Fi)
2 ≤ κ.

We aim to minimize the local linear approximation:

L(F+∆F) ≈ L(F) +

d∑
i=1

gi ∆Fi.

Thus, dropping the constant L(F), the constrained
objective is

min
∆F

d∑
i=1

gi (∆Fi) subject to
d∑

i=1

λi (∆Fi)
2 ≤ κ.

(34)
We can solve this using Lagrange multipliers. The
Lagrangian is

L(∆F, ν) =

d∑
i=1

gi ∆Fi + ν
(
κ−

d∑
i=1

λi (∆Fi)
2
)
.

Setting partial derivatives w.r.t. ∆Fi to zero gives

∂L
∂(∆Fi)

= gi − 2νλi(∆Fi) = 0

=⇒ ∆Fi =
gi

2νλi
.



Next, substituting back into the constraint

d∑
i=1

λi

(
gi

2 ν λi

)2

=
1

4 ν2

d∑
i=1

g2i
λi
≤ κ,

which yields

ν =
1

2
√
κ

( d∑
i=1

g2i
λi

)1/2

.

Hence the optimal solution takes the form

∆F ⋆
i = −α

gi
λi

with α =
1√
κ

( d∑
i=1

g2i
λi

)−1/2

,

where we applied a negative sign if our goal is to de-
crease the logit (i.e., a gradient ascent/descent per-
spective).
Interpreting ∆F ⋆

i shows that each coordinate’s up-
date is inversely proportional to λi. If, instead of
a continuous ∆Fi, one chooses to nullify or scale
only those top-k coordinates with largest |gi|/

√
λi,

it achieves a similar minimization effect while re-
specting the Fisher budget. Hence, in practice, se-
lecting coordinates by |gi| (assuming λi ≈ const)
or by |gi|/

√
λi (if λi significantly varies per co-

ordinate) is optimal for reducing the logit within
the Fisher constraint. This matches the essence of
Gradient Short-Circuit, thereby proving the state-
ment.

Remarks. - In typical CNN representations, the
Fisher diagonal often scales similarly across chan-
nels/coordinates, allowing a simpler criterion |gi| to
suffice in practice. - The result also highlights that
small, sparse modifications in directions of large
gradient (weighted by λi) yield a powerful logit
drop, which is consistent with the OOD fragility ar-
guments in Appendix A.1.

Summary of Fisher Perspective

Key Takeaways:
1. Fisher Metric: The Fisher information matrix

I(F) captures local model sensitivity.
2. Constraint Geometry: Limiting ∆F⊤ I(F)∆F

corresponds to small “Fisher distance” moves
from F.

3. Optimality: Under diagonal or near-diagonal
Fisher assumptions, short-circuiting largest-
gradient coordinates is the optimal local solution

to minimize OOD confidence.
This viewpoint unifies Gradient Short-Circuit with a
second-order information geometry, reinforcing that
GSC not only suppresses spurious OOD logits
but also does so optimally under the Fisher con-
straint.

B. Additional Experiments
B.1. Challenging OOD Detection
Setting We next evaluate difficult or domain-similar OOD
tasks on CIFAR-100 (DenseNet-101), including LSUN-Fix,
ImageNet-Fix, ImageNet-Resize, and CIFAR-10. These
tasks are challenging due to high semantic overlap or simi-
lar appearance to CIFAR-100. The network is trained under
the same protocol (100 epochs, batch size 64), and we com-
pare baseline methods with Gradient Short-Circuit.

Results and Discussion From Table 7, GSC (ours) ex-
cels in these more difficult OOD settings, especially on
LSUN-Fix and ImageNet-Fix, where FPR95 is reduced by
over 2% relative to ConjNorm, while AUROC simultane-
ously improves. The gradient-based mask effectively miti-
gates partial overlap in semantic features, thereby reducing
false alarms. Even on CIFAR-10, which shares visual sim-
ilarities with CIFAR-100, GSC maintains consistent gains
over other methods.

B.2. Long-Tailed OOD Detection
Setting We further consider a long-tailed CIFAR-100
scenario where the class distribution is skewed by a factor
of β = 50. We adopt ResNet-32 as the backbone and fol-
low the typical long-tail training strategy with a batch size
of 64, 200 epochs, and step-based learning rate decay. This
setup aligns with standard long-tail benchmarks. We eval-
uate OOD detection on SVHN, LSUN, iSUN, Texture, and
Places365.

Results and Discussion Table 8 demonstrates that GSC
(ours) surpasses prior approaches even under severe class
imbalance. Notably, it reduces FPR95 and raises AUROC
on challenging OOD sets such as SVHN and iSUN, where
baseline methods often struggle. By systematically nul-
lifying a small subset of gradient-sensitive features, GSC
remains robust to the uneven class distribution and avoids
overfitting to underrepresented classes.

B.3. Tiny-ImageNet Results
Setting Finally, we test on Tiny-ImageNet (DenseNet-
101), which contains 64×64 images across 200 classes. We
maintain the same hyperparameters as CIFAR (100 epochs,
batch size 64, learning rate 0.1 decayed at epochs 50, 75,



Table 7. Challenging OOD detection on CIFAR-100 with DenseNet-101. FPR95(%) and AUROC(%) are shown for four domain-similar
OOD sets. We report the mean over five runs. Lower FPR95 and higher AUROC indicate superior performance.

Method LSUN-Fix ImageNet-Fix ImageNet-Resize CIFAR-10 Avg

MSP 90.43 / 63.97 88.46 / 67.32 86.38 / 71.24 89.67 / 66.47 88.73 / 67.25
ODIN 91.28 / 66.53 82.98 / 72.89 72.71 / 82.19 88.27 / 71.30 83.81 / 73.23
Energy 91.35 / 66.52 83.02 / 72.88 72.45 / 82.22 88.17 / 71.29 83.75 / 73.23
ReAct 93.70 / 64.52 83.36 / 73.47 62.85 / 85.79 89.09 / 69.87 82.25 / 73.41
KNN 91.70 / 69.70 80.58 / 76.46 68.90 / 85.98 83.28 / 75.57 81.12 / 76.93
ConjNorm 85.80 / 72.48 76.14 / 78.77 65.38 / 86.29 84.87 / 75.88 78.05 / 78.35
GSC (ours) 83.28 / 74.92 73.61 / 79.65 62.74 / 87.63 82.42 / 77.35 75.51 / 79.89

Table 8. Long-tailed OOD detection on CIFAR-100 (β = 50) with ResNet-32. We average results across SVHN, LSUN, iSUN, Texture,
and Places365. Lower FPR95 and higher AUROC are better.

Method SVHN LSUN iSUN Texture Places365 Avg

MSP 97.82 / 56.45 82.48 / 73.54 97.61 / 54.95 95.51 / 54.53 92.49 / 60.08 93.18 / 59.91
ODIN 98.70 / 48.32 64.80 / 83.70 97.47 / 52.41 95.99 / 49.27 91.56 / 58.49 89.70 / 58.44
Energy 98.81 / 43.10 47.03 / 89.41 97.37 / 50.77 95.82 / 46.25 91.73 / 57.09 86.15 / 57.32
KNN 64.39 / 86.16 56.13 / 84.24 45.36 / 88.39 34.36 / 89.86 90.31 / 60.09 58.11 / 81.75
ConjNorm 40.16 / 91.00 45.72 / 87.64 41.89 / 90.42 40.50 / 86.80 91.74 / 58.44 52.00 / 82.86
GSC (ours) 37.64 / 91.89 41.25 / 88.92 38.65 / 91.37 37.83 / 87.91 90.18 / 59.75 49.11 / 83.97

90). We evaluate OOD performance on SVHN, LSUN, and
Places365, averaging the results.

Results and Discussion Table 9 indicates that GSC
(ours) again achieves the best average FPR95 and AUROC
on Tiny-ImageNet, outperforming ConjNorm and ASH.
The dense, higher-resolution images in Tiny-ImageNet still
benefit from GSC’s short-circuiting of spurious gradients.
These findings confirm that our gradient-based approach
generalizes effectively across different image scales and
class counts, including relatively small but more numerous
classes in Tiny-ImageNet.

B.4. Further Ablation and Comparisons
Setting In this subsection, we delve into additional abla-
tions on CIFAR-100 (DenseNet-101) beyond the main text.
Specifically, we explore:
• Random Mask vs. Reverse Mask: masking coordinates

with the smallest gradient magnitudes or choosing them
at random, in contrast to our standard GSC approach that
zeroes out the top-∥∇∥ coordinates.

• Finer Mask Ratios (1%, 2%, 5%, 10%) to see how par-
tial feature removal scales.

• Impact on ID Classification Accuracy: measuring the
top-1 classification accuracy on CIFAR-100 before and
after short-circuiting.

• Different Network Depth/Layer: applying gradient
short-circuit to various layers (e.g., first/second/third

DenseBlock) or comparing across ResNet-18/34/50/101.
All experiments continue to follow the same training
scheme (100 epochs, batch size 64, learning rate decay at
50/75/90) and evaluate on the six OOD datasets (SVHN,
LSUN-Crop, LSUN-Resize, iSUN, Places365, Textures).
We report mean results over five runs.

Results and Discussion From Table 10, Random or Re-
verse masking is clearly suboptimal, as either removing co-
ordinates at random or removing those with the smallest
gradient magnitudes fails to suppress key spurious activa-
tions. In contrast, standard GSC (ours) preserves the most
relevant features while eliminating high-gradient outliers,
yielding much better FPR95 / AUROC. Table 11 indicates
that increasing the mask ratio from 1% to around 5–10%
helps reduce OOD false positives; however, returns dimin-
ish beyond 10%. Table 12 shows that short-circuiting with
a moderate mask ratio imposes only a minor loss in ID ac-
curacy (¡1%). Finally, Table 13 suggests that deeper net-
works (e.g., ResNet-50, ResNet-101) yield slightly better
OOD metrics under the same short-circuit procedure, pre-
sumably due to richer feature representations in later layers.

B.5. Short-Circuit at Different Network Layers
Setting Beyond our default strategy of applying gradi-
ent short-circuit (GSC) at the penultimate layer, we inves-
tigate how the choice of network depth affects both OOD
detection and ID accuracy. Specifically, on DenseNet-101



Table 9. Tiny-ImageNet OOD detection with DenseNet-101. We compare MSP, Energy, ReAct, ASH, Maha, ConjNorm, and GSC (ours).
Results are averaged for three OOD sets (SVHN, LSUN, Places365). Lower FPR95 and higher AUROC are better.

Method SVHN LSUN Places365 Avg (FPR95 / AUROC)

MSP 73.42 / 82.39 65.87 / 85.18 72.63 / 81.87 70.64 / 83.15
Energy 68.21 / 84.75 60.43 / 87.24 68.35 / 83.72 65.66 / 85.24
ReAct 59.53 / 87.19 52.87 / 89.63 61.72 / 86.30 58.04 / 87.71
ASH 49.82 / 89.95 45.36 / 91.28 54.91 / 88.53 50.03 / 89.92
Maha 55.14 / 87.24 53.78 / 88.91 59.43 / 85.10 56.12 / 87.08
ConjNorm 46.29 / 91.13 42.57 / 92.35 50.68 / 89.42 46.51 / 90.97
GSC (ours) 43.78 / 92.04 39.85 / 93.26 47.34 / 90.58 43.66 / 91.96

Table 10. Random vs. Reverse vs. Standard GSC on CIFAR-
100. Each approach uses a 5% mask ratio (top gradient coordi-
nates for GSC, smallest gradient for Reverse, random selection
for Random). We display averaged FPR95 (%) and AUROC (%)
across six OOD sets.

Mask Strategy FPR95 (%) ↓ AUROC (%) ↑
Random 45.32 88.73
Reverse 62.18 83.42
GSC (ours) 25.75 93.01

Table 11. Finer mask ratio comparison on CIFAR-100 with zero-
out short-circuit. We show FPR95 (%) / AUROC (%) for each
ratio.

Mask Ratio 1% 2% 5% 10%

FPR95 (%) 42.15 34.89 25.75 24.10
AUROC (%) 89.25 91.48 93.01 93.21

Table 12. Top-1 classification accuracy (%) on CIFAR-100 be-
fore and after short-circuiting (5% zero-out). We also list the drop
∆Acc for each method.

Method ID Accuracy (Baseline) After Short-Circuit ∆Acc

DenseNet-101 77.4 76.9 -0.5
ResNet-50 76.1 75.5 -0.6

Table 13. Short-circuit across different network depths or layer
positions (ResNet-18/34/50/101 on CIFAR-100). We measure
FPR95 (%) / AUROC (%). Each model applies a 5% zero-out
mask at its penultimate layer.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101

FPR95 (%) 28.42 26.85 25.75 25.26
AUROC (%) 92.31 92.75 93.01 93.22

trained with the same protocol described in Section 4.1,
we compare: (i) No SC (Baseline), (ii) Block2 only (af-
ter the second DenseBlock), (iii) Block3 only, (iv) Penulti-

Table 14. Layer-wise short-circuit on CIFAR-100 with
DenseNet-101. “Block2 + Penultimate” combines a 1% mask at
Block2 and 4% at the penultimate layer, maintaining an overall
5% budget. We report the average FPR95 (%) and AUROC (%)
on six OOD sets, plus the ID top-1 accuracy (%).

Method FPR95 (%)↓ AUROC (%)↑ ID Acc (%)↑

No SC (Baseline) 80.13 74.36 77.4
Block2 only 35.21 90.67 76.5
Block3 only 29.42 92.11 76.8
Penultimate only 23.15 93.62 76.9
Block2 + Penultimate 22.04 93.89 76.3

mate only, and (v) Block2 + Penultimate (applying GSC at
both Block2 and the penultimate layer but keeping the total
masked coordinates at about 5%). Unless otherwise noted,
we zero out the top-gradient coordinates in each targeted
layer. We measure OOD performance (FPR95/AUROC)
across the same six test sets (SVHN, LSUN-Crop, LSUN-
Resize, iSUN, Places365, Textures) and report their aver-
age scores together with CIFAR-100 ID top-1 accuracy. Ta-
ble 14 summarizes the results.

Results and Discussion From Table 14, intervening at
deeper layers consistently yields stronger OOD discrimina-
tion (e.g., FPR95 drops from 35.21% at Block2 to 23.15%
at the penultimate layer), and the ID accuracy reduction re-
mains mild as we move closer to final representations. Ap-
plying GSC in multiple layers (Block2 + Penultimate) fur-
ther lowers the false-positive rate to 22.04% and slightly
boosts AUROC, though the ID accuracy dips to 76.3%, in-
dicating more aggressive feature alteration. Overall, these
results confirm that deeper feature spaces capture more dis-
criminative cues for suppressing OOD activation, while
multi-layer short-circuit can amplify OOD gains at a small
additional cost in ID performance.

B.6. Finer Approximation vs. Higher-Order Effects
Setting In addition to the default first-order expansion
y′
approx ≈ y +

(
∇F y

)⊤
∆F, we conduct an offline exper-



Table 15. Approximation error analysis: offline comparison of
the first-order approximation y′

approx vs. the exact forward pass
y′
exact after short-circuiting. We report the absolute difference in

final detection scores across 500 ID samples (CIFAR-100) and 500
OOD samples (SVHN).

ID OOD

Score Mean ± Std Max Mean ± Std Max

Energy 0.06 ± 0.03 0.15 0.10 ± 0.04 0.21
MSP 0.01 ± 0.01 0.04 0.02 ± 0.02 0.08
ODIN 0.02 ± 0.01 0.07 0.05 ± 0.02 0.12

iment on a held-out subset of 500 in-distribution (ID) sam-
ples from CIFAR-100 and 500 out-of-distribution (OOD)
samples (e.g., SVHN) to compare y′

exact (obtained via a
full second forward pass) and y′

approx (the one-step first-
order approximation). We also measure whether including
second-order terms ∆F⊤H∆F (where H is the Hessian)
would significantly improve accuracy, even though comput-
ing it at inference time is too expensive in practice. After
obtaining both y′

exact and y′
approx, we evaluate the absolute

difference in various OOD scores: Energy, MSP (maximum
softmax probability), and ODIN.1 Table 15 reports the mean
± std of |∆(Score)| for ID/OOD, along with the maximum
observed discrepancy.

Results and Discussion Table 15 shows that the dis-
crepancy between y′

exact and y′
approx remains small for

both ID and OOD, with mean absolute differences under
0.06 for Energy and even lower for MSP. ODIN exhibits
a slightly larger gap, but it stays within 0.05 on average.
These observations indicate that higher-order contributions
(∆F⊤H∆F) do not substantially affect the final detection
scores in practice, suggesting that the first-order approach
accurately captures short-circuit’s impact. Even at the upper
extremes (Max column), the deviation is still modest, con-
firming that the omitted second-order term rarely produces
a critical shift in OOD vs. ID decisions. Hence, although
second-order expansions could theoretically refine the logit
estimate, their computational cost would far outweigh the
marginal gains in detection performance.

B.7. Mask Strategies: Iterative vs. One-Shot, Local
Replacement vs. Zero-Out

Setting Beyond the baseline one-shot masking of top-k
gradient coordinates (Section 3), we further examine two
extensions on DenseNet-101 trained with CIFAR-100 un-
der the same protocol described in Section 4.1. First, we
compare one-shot short-circuiting (directly zeroing out the

1We use the same settings for ODIN temperature and perturbation as in
Section 4.1.

Table 16. Iterative vs. One-Shot Short-Circuit. We split an over-
all 5% budget into multiple steps for the iterative approach. “No
SC” is the unmodified baseline.

Method FPR95 (%)↓ AUROC (%)↑ ID Acc (%)↑

No SC (Baseline) 80.13 74.36 77.4
One-Shot (5%) 25.75 93.01 76.9
Two-Step (2.5% + 2.5%) 21.83 93.45 76.6
Three-Step (5% total) 19.92 93.71 76.1

Table 17. Local Replacement vs. Zero-Out. All methods mask
the same top-5% coordinates; “Clip(±1.0)” truncates those coor-
dinates to lie in [−1, 1]. “Orth” performs an orthogonal projection
onto the subspace orthogonal to the gradient.

Method FPR95 (%)↓ AUROC (%)↑ ID Acc (%)↑

Zero-Out (Default) 25.75 93.01 76.9
Clip(±1.0) 26.88 92.85 77.1
Clip(±0.5) 28.64 92.58 77.2
Orth Projection 29.32 92.35 77.0

top 5%) against an iterative scheme that re-computes gra-
dients and removes top-k coordinates over multiple smaller
rounds (Table 16). Second, we evaluate local replacement
approaches (e.g. clipping values) instead of pure zero-out,
to see if partial preservation of feature magnitudes can re-
duce ID accuracy loss while retaining strong OOD suppres-
sion (Table 17). We track FPR95 / AUROC averaged over
six OOD sets (SVHN, LSUN-Crop, LSUN-Resize, iSUN,
Places365, Textures) plus CIFAR-100 ID top-1 accuracy.

Results and Discussion Table 16 shows that partitioning
the 5% mask across multiple rounds (e.g. three-step iter-
ative removal) further lowers OOD false positives (FPR95
from 25.75% to 19.92%) while mildly reducing ID accuracy
(from 76.9% to 76.1%), indicating a more aggressive sup-
pression of spurious coordinates. In Table 17, local clipping
preserves slightly higher accuracy but does not match the
OOD discrimination of a full zero-out, reflecting that resid-
ual partial activation can still amplify OOD logits. Over-
all, these ablations highlight that iterating the short-circuit
can push OOD confidence down further at a modest ac-
curacy cost, whereas gentler per-coordinate modifications
(like clipping) safeguard ID features but yield somewhat
weaker OOD rejection.

B.8. Batch Size and Multi-GPU Scalability
Setting While our earlier timing experiments (Sec-
tion 4.5) focused on single-image inference on one GPU, we
now measure performance for larger batch sizes on a single
GPU and then test how each method scales to multi-GPU
data parallelism (using four RTX 3090 GPUs). Specifically,
we run batch sizes {1, 4, 16} on a single NVIDIA RTX
3090 under PyTorch with cuDNN enabled and automatic



mixed precision, and then replicate the same experiment on
a 4-GPU cluster (each batch split evenly across GPUs). All
results average ten warm-up runs plus 50 timed runs, re-
porting the relative runtime (speed factor vs. MSP = 1.00)
and peak memory usage. We compare: (i) MSP (Base-
line), (ii) ODIN (requires input perturbation and a second
forward), (iii) GSC(no approx) (two forwards for gradient
short-circuit), (iv) GSC(approx) (our first-order approxi-
mation with one forward + backward). Tables 18 and 19
provide the results.

Results and Discussion Table 18 shows that for single-
GPU execution, ODIN and GSC(no approx) can be more
than 3× slower than MSP at small batch sizes (due to
the second forward), whereas GSC(approx) cuts overhead
roughly in half by skipping the second forward pass.
As batch size increases to 16, the backward pass over-
head becomes increasingly amortized, so GSC(approx) and
GSC(no approx) converge to 1.37× and 2.02×, respec-
tively. Table 19 further demonstrates that distributing
batches across four GPUs speeds up each approach, but the
relative advantage of GSC(approx) vs. GSC(no approx) re-
mains: for example, at batch=16, GSC(no approx) runs at
1.56× while GSC(approx) drops to 1.24×. Hence, skip-
ping the second forward pass consistently lowers latency
and memory usage across both single- and multi-GPU con-
figurations, showing that our approximation remains bene-
ficial for large-batch, multi-card inference scenarios.

B.9. Visualizations

Setting To further illustrate how Gradient Short-Circuit
(GSC) separates in-distribution (ID) and out-of-distribution
(OOD) samples, we provide additional density plots com-
paring GSC to baseline methods (e.g., ConjNorm, ASH).
We use CIFAR-100 as ID and LSUN as OOD for concrete-
ness, though the same approach applies to other datasets.
All models follow our standard training protocol, and we
collect their final “scores” for both ID and OOD sets. Fig-
ures 5 and 6 depict these densities.

Results and Discussion In Figure 5, the baseline meth-
ods like MSP or ConjNorm exhibit partial overlap between
CIFAR-100 (ID) and LSUN (OOD) histograms, causing
higher false positives. By contrast, GSC-based plots re-
veal a more pronounced separation (orange vs. blue), re-
ducing the overlap region. Figure 6 offers an overlay view,
reinforcing that GSC (and variants) push OOD scores to-
ward lower ranges while maintaining ID in a higher domain.
These visualizations illustrate how masking a small subset
of high-gradient features effectively curtails spurious confi-
dence on OOD inputs.

C. Gradient Concentration Analysis
In this section, we conduct an empirical study to verify the
claim that out-of-distribution (OOD) samples exhibit more
concentrated gradients in high-level feature space com-
pared to in-distribution (ID) data. Specifically, OOD sam-
ples tend to place a disproportionate amount of their logit’s
gradient norm in just a few coordinates, whereas ID sam-
ples distribute their gradient more evenly across many di-
mensions. This observation motivates our Gradient Short-
Circuit approach to mask only the top few coordinates with
large gradient magnitudes in order to suppress OOD confi-
dence.

C.1. Setting
We use ImageNet-1K as our ID dataset and iNaturalist as
OOD. Following the same training protocol described in
Section 4 of the main text, we train a ResNet-50 on Im-
ageNet for 90 epochs with standard augmentations and a
batch size of 128. After training, we select 1,000 ImageNet
validation images (ID) and 1,000 iNaturalist images (OOD).
For each image, we compute the high-level feature F ∈ Rd

at the penultimate layer and evaluate the gradient

g = ∇F

[
y
]
c
,

where c = argmaxj [y]j . We sort |gi| in descending order
and define the top-k ratio:

TopKRatio(k) =

∑k
i=1|g(i)|∑d
i=1|g(i)|

, (35)

where k can be varied. A higher TopKRatio(k) at small
k indicates a stronger concentration of the gradient norm in
fewer coordinates.

C.2. Results and Discussion
Table 20. We first compare the average TopKRatio at
k = 50 across 1,000 ID and 1,000 OOD samples. Table 20
shows that the OOD data devotes roughly 40% of its gra-
dient norm to just 50 coordinates, while ID samples only
concentrate around 25%. The standard deviation indicates
that this gap is consistently present across different images.
Figure 7. We also plot the TopKRatio(k) curve for 1 ≤
k ≤ 150 in Figure 7. Each point is the mean ratio over
1,000 images. We observe that the OOD curve lies above
the ID curve consistently, confirming that OOD gradients
are more “peaked” around a small number of coordinates.
This phenomenon aligns with our short-circuit motivation:
by masking only the top few gradient-sensitive dimensions,
we can drastically reduce OOD confidence while minimally
affecting ID classification.
These results provide clear quantitative evidence that OOD
samples rely on a small number of feature coordinates to



Table 18. Single-GPU: Runtime and memory under different batch sizes. We show speed relative to MSP=1.00 and peak GPU memory
(GB) on one RTX 3090.

Batch=1 Batch=4 Batch=16

Method Rel. Time Mem (GB) Rel. Time Mem (GB) Rel. Time Mem (GB)

MSP (Baseline) 1.00 2.3 1.00 2.6 1.00 3.9
ODIN 3.05 3.8 2.52 4.2 1.83 5.6
GSC(no approx) 3.78 4.1 2.74 4.6 2.02 6.0
GSC(approx) 2.10 3.3 1.65 3.7 1.37 5.0

Table 19. 4-GPU data parallel: Runtime and memory under different batch sizes. We split the same input batch evenly across four
RTX 3090 GPUs, reporting speed relative to MSP=1.00 and the maximum GPU memory usage among the four devices.

Batch=1 Batch=4 Batch=16

Method Rel. Time Mem (GB) Rel. Time Mem (GB) Rel. Time Mem (GB)

MSP (Baseline) 1.00 1.8 1.00 2.4 1.00 3.7
ODIN 2.26 2.9 1.85 3.4 1.44 4.9
GSC(no approx) 2.82 3.0 2.06 3.6 1.56 5.2
GSC(approx) 1.82 2.6 1.43 3.1 1.24 4.2

Table 20. Comparison of TopKRatio(50) on 1,000 ID (Ima-
geNet) and 1,000 OOD (iNaturalist) samples. Higher values imply
a more concentrated gradient distribution.

Dataset TopKRatio(50) ± Std

ImageNet (ID) 0.257 0.028
iNaturalist (OOD) 0.406 0.043

inflate their predicted logits, whereas ID samples exhibit a
broader spread. This gradient concentration phenomenon
underpins our Gradient Short-Circuit design, enabling se-
lective modification of a small subset of coordinates to sup-
press OOD confidence.
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Figure 5. Density plots (2×3) comparing baseline methods and GSC on CIFAR-100 (ID, orange) vs. LSUN (OOD, blue). Top row:
baseline methods (a) MSP, (b) ConjNorm, (c) ASH; bottom row: short-circuit variants (d) GSC (no approx), (e) GSC (ours, approx), (f)
GSC + ASH. The OOD distribution is consistently shifted leftward under GSC-based approaches, indicating fewer false positives.
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Figure 6. Overlay comparison for selected methods, showing ID vs. OOD distributions in a single plot. Each column corresponds to a
different method (ConjNorm, GSC, GSC+ASH), demonstrating how GSC widens the gap between ID (orange) and OOD (blue). Overlays
are plotted with partial transparency and hatching to highlight the shift.
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Figure 7. Average TopKRatio(k) for ID vs. OOD samples
(ResNet-50). The OOD gradient mass rises more quickly with
k, indicative of higher concentration on fewer coordinates. (The
shaded regions denote ±1 standard deviation.)
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