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1. Additional Implementation Details

In this section, we introduce the implementation details

of the RGB-Thermal, RGB-Language, and RGB-Thermal-

Language experiments. We also introduce the hyperparam-

eter settings in our proposed module.

RGB-Thermal. We adhere to the experimental settings of

ThermalGaussian for a fair comparison. Specifically, we

use spherical harmonic coefficients to model the thermal

modality and adjust our thermal rasterization to render ther-

mal images akin to RGB images. The loss function mir-

rors that of, incorporating a smoothness loss for the thermal

modality with λsmooth set to 0.6. The weights for both RGB

and thermal losses are set to 0.5.

RGB-Language. Following LangSplat, we modify our lan-

guage rasterization to render three-dimensional language

features. The language loss is defined as the L1 loss be-

tween the ground-truth and rendered feature maps. The

weights for both RGB and language losses are set to 0.5.

For open-vocabulary localization and semantic segmenta-

tion, we adopt the same procedure as LangSplat.

RGB-Thermal-Language. We employ the same thermal

and language rasterization process as used in the two-

modality evaluations. The same thermal and language

losses are applied. The weights for RGB and thermal losses

are set to 0.5, and the weight for language loss is set to 0.2.

Hyperparameters. In our proposed “Soft Prune”, we set

the pruning threshold for single-modal Gaussians to 0.5,

effectively removing unimportant Gaussians and resulting

in a more compact scene representation. For our multi-

modal decomposition mechanism, we employ the L2 norm

to calculate gradient differences among modalities. This

decomposition is integrated into the densification process.

If the gradient difference between two modalities exceeds

0.0002, we decompose the multi-modal Gaussian into mul-

tiple single-modal Gaussians.

2. Additional Ablation Studies

To further investigate the sensitivity of the threshold setting

of multimodal decomposition, we conduct an additional ab-

lation study. As shown in Tab. 1, our chosen threshold con-

sistently achieves superior performance across all metrics.

Moreover, we observe only a slight performance drop when

the threshold is adjusted, highlighting the robustness of our

proposed method.

We also present the complete ablation results for each

scene in Tab. 2. Our full method (Decomp.) consistently

outperforms other approaches across most scenes, demon-

strating the effectiveness of our multimodal decomposition

Table 1. Ablation for the threshold of multimodal decomposition.

Threshold
RGB Thermal Lang Num

×10
4

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑

0.0001 23.11 0.809 0.246 23.94 0.864 0.190 47.1 9.5

0.0002 23.19 0.812 0.245 24.24 0.867 0.187 48.1 9.9

0.0003 23.13 0.810 0.246 24.04 0.865 0.187 47.3 10.1

0.0004 23.03 0.808 0.246 24.15 0.866 0.187 47.0 10.3

Table 2. Full ablation studies on RGB-Thermal-Language by grad-

ually adding components to our joint training baseline “MM-J”.

“MM” refers to our modality modeling module. “H” and “S” de-

note “Hard” and “Soft”, respectively.

M Metric Method Dimsum DS LS Truck Avg.

PSNR ↑

MM-J 23.99 20.99 20.98 23.32 22.32

+ MM 24.16 21.41 20.92 23.02 22.38

Prune (H) 24.14 21.45 21.80 23.27 22.67

Prune (S) 24.69 21.99 21.78 23.45 22.98

Decomp. 24.74 22.15 21.85 24.01 23.19

R SSIM ↑

MM-J 0.854 0.782 0.721 0.827 0.796

+ MM 0.856 0.795 0.716 0.820 0.797

Prune (H) 0.855 0.801 0.718 0.831 0.801

Prune (S) 0.864 0.812 0.720 0.835 0.808

Decomp. 0.863 0.814 0.723 0.846 0.812

LPIPS ↓

MM-J 0.199 0.277 0.281 0.232 0.247

+ MM 0.196 0.255 0.274 0.236 0.240

Prune (H) 0.207 0.259 0.288 0.235 0.247

Prune (S) 0.204 0.253 0.298 0.235 0.248

Decomp. 0.204 0.251 0.296 0.228 0.245

PSNR ↑

MM-J 26.18 21.55 21.65 24.13 23.38

+ MM 26.35 22.25 21.42 24.89 23.73

Prune (H) 26.35 21.73 22.55 24.80 23.86

Prune (S) 26.62 21.44 22.43 25.45 23.99

Decomp. 26.82 22.11 22.57 25.46 24.24

T SSIM ↑

MM-J 0.886 0.828 0.840 0.842 0.849

+ MM 0.885 0.847 0.837 0.855 0.856

Prune (H) 0.891 0.838 0.862 0.862 0.863

Prune (S) 0.892 0.837 0.861 0.868 0.865

Decomp. 0.893 0.848 0.860 0.868 0.867

LPIPS ↓

MM-J 0.130 0.227 0.274 0.168 0.200

+ MM 0.149 0.193 0.333 0.158 0.208

Prune (H) 0.123 0.197 0.264 0.152 0.184

Prune (S) 0.129 0.200 0.278 0.145 0.188

Decomp. 0.131 0.190 0.279 0.147 0.187

L mIoU ↑

MM-J 56.0 26.9 44.9 52.4 45.1

+ MM 55.9 29.0 44.3 51.9 45.3

Prune (H) 59.4 30.3 44.6 53.6 46.9

Prune (S) 59.4 28.7 46.3 53.6 47.0

Decomp. 61.1 30.6 46.1 54.7 48.1

mechanism. Moreover, the proposed “Soft Prune” method

consistently surpasses “Hard Prune” in most scenes, high-

lighting its advantage in mitigating conflicts associated with

pruning entire Gaussians. While our modality modeling

module serves as the foundation for the multimodal decom-



Table 3. Number of Gaussians (×10
4) for each scene in RGB-Thermal. ThermalGaussian is shortened as “T-GS”.

Method Dim DS Ebk RB Trk RK Bldg II Pt LS Avg.

T-GS 32.2 27.0 19.8 9.3 27.6 43.3 66.5 45.9 20.0 35.7 32.7
MMOne 7.5 5.5 10.4 4.4 9.8 13.6 23.2 14.4 8.4 12.2 12.2

RGB Gaussians: 23.5K Thermal Gaussians: 10.6K Language Gaussians: 15.6K

R-T Gaussians: 5.6K R-L Gaussians: 23.7K R-T-L Gaussians: 5.3K

Figure 1. Gaussian Distributions. The total number of Gaussians

is 89.5K. “T-L Gaussians” are omitted for visual clarity.

position mechanism, its performance remains suboptimal

without the disentangling of modalities, due to the varying

levels of granularity among them.

Table 4. Number of Gaussians (×10
4) in RGB-Language.

Method Figurines Ramen Teatime Kitchen Avg.

LS* 92.2 58.6 182.0 168.0 125.2

LS-J 55.1 31.1 119.0 105.0 77.6

MMOne 29.5 16.4 28.9 42.9 29.4

3. Additional Qualitative Results

To analyze the distributions of multimodal and single-

modal Gaussians, we use the “Dimsum” scene as an exam-

ple. As shown in Fig. 1, different modalities require varying

number of Gaussians.

We also present the qualitative results of modality con-

flicts in Fig. 3. Both “T-GS” and “MM-J” refer to joint train-

ing of multiple modalities with a shared opacity. The ren-

dering results of “MM-J” show significant blurring, which

severely degrades the quality of both RGB and thermal ren-

derings. This suggests that, without our proposed modal-

ity decomposition, modality conflicts become more pro-

nounced as the number of modalities increases. This obser-

vation aligns with our intuition, as different modalities pos-

sess distinct properties. In contrast, our methods, trained

on two or three modalities, consistently deliver superior

results. Notably, the introduction of the language modal-

ity does not degrade the performance of RGB and thermal

modalities, due to our modality modeling module and mul-

timodal decomposition mechanism, which ensure scalabil-

ity to additional modalities.

4. Additional Quantitative Results

We present the number of Gaussians in the RGB-Thermal

and RGB-Language experiments to further highlight the ef-

fectiveness of our method in achieving a compact repre-

sentation. As shown in Tab. 3, our method uses approxi-

mately one-third of the Gaussians utilized by ThermalGaus-

sian. Similarly, Tab. 4 demonstrates that our method em-

ploys only 25% of the Gaussians used by LangSplat and

40% of those used by the joint training baseline modified

from LangSplat. These results underscore that our multi-

modal decomposition mechanism effectively eliminates re-

dundant Gaussians, leading to a more compact and efficient

scene representation.

For RGB-Language experiments, we additionally in-

clude Feature-3DGS as another joint training baseline with

a different language rasterizer. As shown in Tab. 5, due to

modality conflicts, the performance of “F-GS” and “LS-J”

drops 0.7%mIoU and 0.8dB for language and RGB, respec-

tively. In contrast, 9.0%mIoU and 0.3dB improvements are

achieved by our MMOne.

To further demonstrate the benefits of incorporating ther-

mal information, we conduct additional RGB-Language ex-

periments on the “Dimsum” scene. As shown in Tab. 6,

the inclusion of thermal data leads to improvements in both

RGB rendering quality and open-vocabulary segmentation

accuracy, highlighting its effectiveness in enhancing multi-

modal scene understanding.

Table 5. Additional quantitative comparisons on RGB-Language.

Feature-3DGS is shortened as “F-GS”.

Method
RGB Lang

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑ acc ↑

LS* 24.02 0.854 0.220 47.6 72.4

F-GS 24.16 0.851 0.232 46.9 71.7

LS-J 23.23 0.837 0.257 55.3 73.5

MMOne 24.35 0.851 0.244 56.6 76.5

Table 6. Quantitative comparisons between RGB-Language and

RGB-Thermal-Language.

Method
RGB Lang

PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑

MMOne(R/L) 24.46 0.861 0.204 57.1

MMOne(R/T/L) 24.74 0.863 0.204 61.1



Table 7. Quantitative results of incorporating monocular depth.

Method
RGB Thermal Lang

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ mIoU ↑

MMOne(R/T/L) 24.74 0.863 0.204 26.82 0.893 0.131 61.1

MMOne(R/T/L/D) 24.75 0.863 0.206 26.84 0.893 0.130 61.1

GT w/o depth w/ depth

Figure 2. Qualitative results of incorporating monocular depth.

5. Additional Experiments on Scalability

We further validate scalability by incorporating monocular

depth in the “Dimsum” scene. The results in Fig. 2 and

Tab. 7 show that the rendered depth quality is enhanced,

particularly on flat surfaces, without compromising the per-

formance of RGB, thermal, and language.



T-GS (R/T) MM-J (R/T/L)GT MMOne (R/T) MMOne (R/T/L)

Figure 3. Qualitative results of the modality conflicts caused by the introduction of language. “T-GS” refers to ThermalGaussian and

“MM-J” denotes our RGB-Thermal-Language joint training baseline.
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