A Token-level Text Image Foundation Model for Document Understanding
(Supplementary Materials)

1. Interactive Demo

As shown in Figures 1, 2, and 3, we provide more interactive
examples, including natural scene images, documents, codes,
charts, tables, and GUIs. For each scene, we provide two
examples. The first column is the original image, the second
to fourth columns are the corresponding visualizations of the
selected BPE words within the image, and the last column
shows the highlighted area of the image when the prompt is
a space “”. As we observed,

1) Our foundation model, TokenFD, can distinguish text
and background areas well. This means that when using
the foundation model for downstream tasks, we can remove
redundant background features at a very low cost;

2) For complex, dense, and small texts, TokenFD still pre-
cisely perceive, such as “picture”(Code), “f”’(Code), “19”(Ta-
ble), “P”(Table), etc. Our TokenFD also supports handwrit-
ten texts, such as “STE”(Document) and “USA”(Document).
Additionally, our TokenFD can still capture punctuation
marks, such as commas, periods, double quotes, etc. This
means that our foundation model has the potential to be
customized for retrieval-augmented generation tasks;

We will deploy TokenFD to the huggingface space to
provide an interactive interface for users to experience.

2. VQA-based Text Parsing Tasks

Modality connectors act as the bridge between the visual
foundation model (VFM) and the LLM. Previous MLLMs
employ image-text pairs of natural images (e.g., Concep-
tual Captions, LAION, COYO) to pre-train them. In the
work, to endow our MLLM TokenVL with generality and
comprehensive document understanding abilities, we follow
DocOwl [27] to conduct modality alignment. It involves both
structure-aware parsing tasks (recognizing full text, convert-
ing formulas into LaTeX, converting tables into markdown
or LaTeX, and converting charts into CSV or markdown for-
mats) and multi-grained text localization tasks (recognizing
partial text within localization and visual text grounding).
Specifically, we present an example to introduce them, as
shown in Table 1. In this way, the pre-trained modality
connector can understand the visual features of our VFM
and better project them into the same feature space with the

linguistic features of our LLM.

3. TokenIT Dataset

3.1. Data Source

To construct a comprehensive TokenIT dataset, we collect
various types of data, including natural scene text images,
documents (PDF, receipt, letter, note, report, code, etc.), ta-
bles, charts, and screenshot images (GUIs). The data sources
are summarized in Table 2.

3.2. Data Generation

Next, we elaborate on the data construction pipeline for the
TokenlIT dataset, which involves four steps:

1) Text Image Segmentation. For natural scene text im-
ages, charts and tables, we fine-tune the SAM model [39]
on datasets with character-level mask annotations and lever-
age the well-learned model to generate text masks, since
these images are relatively complex and diverse in color and
style. For PDFs and industrial documents, we conduct sim-
ple unsupervised clustering [33] to get their text masks, as
these images have high contrast between foregrounds and
backgrounds;

2) Text Recognition. We use the previous state-of-the-art
method [21] to obtain the recognition results for all types,
except for natural scene text images. As these natural scene
datasets already provide text transcriptions, we adopt them
directly;

3) Tokenizer. We choose the widely adopted BPE tok-
enizer [9] to split the language texts into multiple BPE to-
kens, where each token corresponds to a BPE-level subword,;
4) Token-level Image Text Construction. After obtaining
the text masks in Step 1, we apply the method [21] to pro-
duce character-level segmentation masks. Subsequently, we
combine each token’s corresponding character-level mask to
create a complete token-level segmentation mask.

5) Data Correction. For each image and its generated labels
following the above stage, we render the labels onto the
images to verify data labeling quality and perform manual
relabeling as needed. Finally, three rounds of inspections
are conducted to minimize labeling errors, a process that
took four months to develop the first token-level image text
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Figure 1. More visualization examples of the natural scene images, document images, and code images.
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Figure 2. More visualization examples of the chart, table, and GUI images.
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Figure 3. More visualization examples of the Chinese and Punctuation interaction.
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Question: Recognize all texts in the image.

Answer:  COg emissions by mode of transport, 2018.
Carbon dioxide (CO2) emissions are mea-
sured in grams per passenger kilometer. This
does not account for non-CO2 greenhouse
gases or the - - -- -+ .

Question: Recognizing the text within the bounding box
<bbox>75, 200, 160, 230</bbox>.

Answer:  Medium car (diesel).

Question: Predict the bounding box of the text
<ocr>Eurostar (International rall)</ocr>

Answer:  <bbox>25, 520, 160, 550</bbox>.

Question: Converting the chart into CSV format.

Answer:  Mode of Transport, CO2 Emissions (g CO2
per passenger km)

Medium car (petrol), 191.6

Medium car (diesel), 168.8

Domestic flight, 133.5

Bus, 103.9
Question:  Converting the chart into Markdown format.
Answer:  |Mode of Transport |CO2 Emissions (g CO2

per passenger km) |
|

| |
|[Medium car (petrol) [191.6 |
|[Medium car (diesel) [168.8 |
|Domestic flight |133.5 |
|Bus [103.9 |

Table 1. The illustration of VQA-based Text Parsing tasks.

dataset (TokenIT).

Overall, the proposed TokenIT dataset includes 20 million
images (including natural scene text images, documents,
tables, charts, and GUIs) and 1780679833 (1.8 billion) token-
mask pairs. Each BPE token corresponds one-to-one with a
pixel-level mask. The number of token-mask pairs ultimately
constructed is 4.5 times that of CLIP and 0.7B more than

SAM.

4. Training Details

4.1. Text Segmentation

In this section, we evaluate the performance of text segmenta-
tion using TextSeg, COCOText, and HierText, which provide
pixel-level annotations. The test sets of these datasets are
utilized for zero-shot experiments. In the linear probe set-
ting, all methods are trained on the combined three training
sets and evaluated separately on each test set. The training
configuration includes 70 epochs, a learning rate of 0.0001,
a batch size of 6, and the optimizer AdamW.

4.2. Visual Question Answering

In this section, we evaluate the performance of visual doc-
ument understanding using the test sets of DocVQA, In-
foVQA, ChartQA, and TextVQA. Following LLava-1.5 [46],
we build VFMs using TokenFD or other vision encoders
based on the Vicuna-7B LLM [12]. The VFM are fixed dur-
ing LLM training. The whole procedure includes two stages:
pre-training and fine-tuning.

During the pre-training phase, we randomly sample
200,000 images each from the II'T-CDIP and DocMatix doc-
ument datasets. Full-text recognition is implemented using
PaddleOCR to generate ground-truth textual content, which
serves as target answers. The model is trained with the in-
structional prompt “Recognize all texts in the image:” where
only the Multilayer Perceptron (MLP) component receives
parameter updates. The training configuration includes one
epoch with a learning rate of 0.001 and a batch size of 24.

In the fine-tuning stage, the LLM is fine-tuned with Low-
Rank Adaptation (LoRA) [29]. The training data consists
of the training sets split from the previously mentioned QA
evaluation datasets. This phase retains single-epoch training
but employs modified hyperparameters—a reduced learning
rate of 0.0002 and a batch size of 12—to ensure stable pa-
rameter convergence. This hierarchical training approach
progressively enhances both text recognition accuracy and
semantic comprehension capabilities in document under-
standing tasks.

4.3. Text Retrieval

In this section, we evaluate model performance using the
CTR benchmark (English) [82] and the CSVTRv2 bench-
mark (Chinese) [85]. For English text retrieval, we employ
the training sets from ICDAR2013, ICDAR2015, COCO-
Text, MLT2017, OpenlmagesV5Text, CTW1500, TotalText,
HierText, and TextOCR. For Chinese text retrieval, we use
ArT, ChineseOCR, HCCDoc, icdar2017rctw, LSVT, MTWI,
and ReCTS as the training sets. These methods are opti-
mized using the AdamW optimizer. The initial learning rate
is 0.0001. We use a batch size of 6 and a number of training



Dataset Type

Dataset Name

Natural Scene

ICDAR2013 [35], COCOText [82], CTW1500 [95], HierText [57], ICDAR2015 [11],
OCRCC [36], OpenlmagesV5Text [40], TextCaps [74], TextOCR [75], TotalText [13],
Laion-OCR [71], Wukong-OCR [20], MLT2017 [68], ocrvga [66], ST-VQA [3],
SynText [55], the-cauldron [43], ArT [14], ChineseOCR [15], HCCDoc [96], IC-
DAR2017rctw [72], LSVT [78], MTWI [23], and ReCTS [100]

Document DocVQA [63], InfographicsVQA [64], KleisterCharity [76], PubTabNet [103], RVL-
CDIP [22], VisualMRC [80], Docmatix [41], HT-CDIP [92], publaynet [102],
Synthdog-en [37], DocGenome [90], CCpdf [81]
Chart ‘ ChartQA [62], FigureQA [32], PlotQA [65],TabMWP [58], DVQA [31]
Table ‘ TableQA [77], DeepForm [79], TURL [16], TabFact [4], WikiTableQuestions [70]
GUI ‘ Screen2Words [83], WebSight [42], OmniACT [34], SeeCliCK [10], Mind2Web [17]

Table 2. Data source of our TokenIT dataset.

epochs of 10. After the first 5 epochs, the initial learning
rate is reduced to 0.00001.

5. Spatial-wise Alignment

The sequence-to-sequence auto-regression training allows
language inputs to interact only implicitly with visual inputs,
where the outputs may rely more on the LLM’s robust se-
mantic context capabilities, especially when generating very
long tokens. Consequently, some research [61, 69] attempts
to equip the model with spatial-wise capabilities, encour-
aging the LLM to reference image content more directly
when responding to questions, rather than relying solely on
its powerful semantic context capabilities. The task they
proposed enhances the spatial-wise capabilities of MLLMs
by integrating localization prompts or predicting coordinates.
However, these methods are implicit and difficult for models
to achieve a precise understanding of spatial alignment. In
contrast, TokenVL provides a direct and explicit method
by aligning answer tokens with their corresponding spatial
image tokens to guide MLLMs. In this way, the model not
only answers the question well, but also explicitly knows
the spatial region in the image to which the answer corre-
sponds. To compare these methods more intuitively, we use
the same data to follow their spatial alignment task while
conducting a VQA-based text parsing. Table 4 presents the
final comparison results.

6. Mainstream Benchmark Results

General multi-modal large models [1, 5, 6, 49, 86, 97] typ-
ically use DocVQA, InfoVQA, ChartQA, and TextVQA
to evaluate document understanding capabilities, as these
benchmarks encompass diverse and comprehensive scenar-
ios that reflect real-world applications. To compare perfor-
mance intuitively and clearly, we collected data from nearly

all MLLMs that reported scores on these four benchmarks
and summarized them in Table 3. Specifically, we categorize
the existing MLLMs into three types based on model size:
“<2B”, “<8B”, and “>8B”. Due to resource constraints,
we did not conduct experiments with models exceeding 8B
parameters in our TokenVL, providing only two versions:
TokenVL-2B and TokenVL-8B. Notably, our TokenVL-2B
improves upon the previous state-of-the-art (SOTA) result by
1.32%, and our TokenVL-8B improves by 0.63%. Compared
to models with larger parameters, our 8B version slightly
surpasses DeepSeek-VL2-16B and InternVL2-40B by 0.3%.

7. More examples compared to other MLLMs

As shown in Figure 4, we present more qualitative visualiza-
tion results to demonstrate TokenVL'’s capabilities in various
VQA tasks. TokenVL analyzes the question, identifies the
key elements in the image relevant to answering the question.

8. Why compare with SAM/CLIP?

We compare them for two reasons:1) Prior works use them
as VFMs due to the lack of domain-specific ones. We close
the gap by developing TokenFD (the first token-level VFM)
comparable to them. Thus the comparison will highlight
the significance of developing TokenFD. 2) Data used to
train CLIP/SAM also includes natural scene text images,
making our comparisons in retrieval/segmentation/TextVQA
tasks reasonable. In addition, similar to other VLMSs’ visual
encoders, SAM is commonly used as the encoder in MLLMs
(e.g., Vary and Deepseek-vl).

9. Less Token

Even when using fewer visual tokens for testing, TokenVL
still achieves robust results 5.



Size ‘ Model Visual Encoder LLM Decoder ‘ DocVQA InfoVQA ChartQA TextVQA‘ Avg.
DocLLM-1B [84] - Falcon-1B 61.4 - - - -
Mini-Monkey [30] InternViT-300M InternLLM2-2B 87.4 60.1 76.5 75.7 74.93
MMI1.5-1B [97] CLIP-ViT-H Private 81.0 50.5 67.2 72.5 67.80
MM1.5-3B [97] CLIP-ViT-H Private 87.7 58.5 742 76.5 74.23

<2B InternVL2-1B [7] InternViT-300M Qwen2-0.5B 81.7 50.9 72.9 70.5 69.00
InternVL2-2B [7] InternViT-300M InternLM2-1.8B 86.9 58.9 76.2 73.3 73.83
LLaVA-OneVision-0.5B [46] SigLIP qwen2-0.5B 70.0 41.8 61.4 - -
InternVL2.5-1B [6] InternViT-300M Qwen2.5-0.5B 84.8 56.0 75.9 72.0 72.18
InternVL2.5-2B [6] InternViT-300M InternLM2.5-1.8B 88.7 60.9 79.2 74.3 75.78
TokenVL-2B TokenFD InternLM2.5-1.8B 89.9 61.0 81.1 76.4 77.10
UReader [93] CLIP-ViT-L/14 LLaMA-7B 65.4 422 59.3 57.6 56.13
DocLLM-7B [84] - LLaMA2-7B 69.5 - - - -
Cream [38] CLIP-ViT-L/14 Vicuna-7B 79.5 43.5 63.0 - -
Qwen-VL [2] ViT-bigG Qwen-7B 65.1 354 65.7 63.8 57.50
LLaVA-1.5-7B [53] CLIP-ViT-L Vicunal.5-7B - - - 58.2 -

- CLIP-ViT+CLIP-
SPHINX [51] ConyNext+DINOV2-ViT LLaMA2-7B - - - 61.2 -
LLaVA-OneVision [45] SigLIP Qwen2-7B 87.5 68.8 80.0 - -
Monkey [48] Vit-BigG Qwen-7B 66.5 36.1 65.1 67.6 58.83
TextMonkey [56] Vit-BigG Qwen-7B 73.0 - 66.9 65.6 -
IDEFICS?2 ([44]) SigLIP-SO400M Mistral-7B 74.0 - - 73.0 -
LayoutLLM [59] LayoutLMv3-large Vicunal.5-7B 74.25 - - - -
DocKylin [98] Swin Qwen-7B 713 46.6 66.8 - -
DocLayLLM [50] LayoutLMV3 LLaMA3-8B 77.79 42.02 - - -
mPLUG-DocOwl [25] CLIP-ViT-L/14 LLaMA-7B 62.2 38.2 574 52.6 52.60
mPLUG-DocOwl1.5 [26] CLIP-ViT-L/14 LLaMA2-7B 82.2 50.7 70.2 68.6 67.93
mPLUG-DocOwI2 [28] CLIP-ViT-L/14 LLaMA2-7B 80.7 46.4 70.0 66.7 65.95
<8B Vary [88] CLIP-ViT-L/14 + SAM Qwen-7B 76.3 - 66.1 - -
Eagle [73] e St + LLaMA3-8B 86 - 801 7L -
PDF-WuKong [91] CLIP-ViT-L-14 InernLM2-7B 85.1 61.3 80.0 - -
TextHawk?2 [94] SigLIP Qwen2-7B 89.6 67.8 81.4 75.1 78.48
MM1.5-7B [97] CLIP-ViT-H Private 88.1 59.5 78.6 76.5 75.68
HRVDA [52] Swin-L LLaMA2-7B 72.1 43.5 67.6 73.3 64.13
InternVL2-4B [7] InternViT-300M Phi-3-mini 89.2 67.0 81.5 74.4 78.03
InternVL2-8B [7] InternViT-300M InternLM2.5-7B 91.6 74.8 83.3 77.4 81.78
InternVL2.5-4B [6] InternViT-300M Qwen2.5-3B 91.6 72.1 84.0 76.8 81.13
InternVL2.5-8B [6] InternViT-300M InternLM2.5-7B 93.0 77.6 84.8 79.1 83.63
InternVL2.5-8B-mpo[87]t InternViT-300M InternLM2.5-7B 92.3 76.0 83.8 79.1 82.80
DeepSeek-VL2-3B [89] SigLIP-SO400M-384 DeepSeekMoE 88.9 66.1 81.0 80.7 79.18
DocPeida [19] Swin Vicuna-7B 47.1 15.2 46.9 60.2 42.35
TokenPacker-7B [47] CLIP-ViT-L/14 Vicuna-7B 60.2 - - - -
LLaVA-OneVision-7B [46] SigLIP qwen2-7B 87.5 68.8 80.0 - -
DocVLM [67] CLIP-ViT-G/14 + DocFormerV?2 Qwen2-7B 92.8 66.8 - 82.8 -
TokenVL-8B TokenFD(323M) InternLM2.5-7B 94.2 76.5 86.6 79.9 84.30
LLaVA-13B [54] CLIP-ViT-L/14 Vicuna-13B 6.9 - - 36.7 -
PaLI-X [5] ViT-22B UL2-32B 86.8 54.8 72.3 80.8 73.68
LLaVAR [101] CLIP-ViT-L/14 Vicuna-13B 11.6 - - 48.5 -
LLaVA-1.5-13B [53] CLIP-ViT-L Vicunal.5-13B - - - 62.5 -
CogAgent [24] FVAZ-CLIP: CosVLM +Cross Vicuna-13B 816 445 684 761 | 67.65
Unidoc [18] CLIP-ViT-L/14 Vicuna-13B 90.2 36.8 70.5 73.7 67.80
MM1.5-30B [97] CLIP-ViT-H Private 914 67.3 83.6 79.2 80.38
InternVL1.5-26B [8] InternViT-6B InternLM2-20B 90.9 72.5 83.8 80.6 81.95
InternVL2-26B [7] InternViT-6B InternLM2-20B 929 75.9 84.9 82.3 84.00

>8B | InternVL2-40B [7] InternViT-6B Nousfermes2¥i | 939 787 862 830 | 8545
InternVL2.5-26B [6] InternViT-6B InternLM2.5-20B 94.0 79.8 87.2 82.4 85.85
InternVL2.5-38B [0] InternViT-6B Qwen2.5-32B 953 83.6 88.2 82.7 87.45
InternVL2.5-78B [6] InternViT-6B Qwen2.5-72B 95.1 84.1 88.3 83.4 87.73
TinyChart [99] SigLIP Phi-2 - - 83.6 - -
TokenPacker-13B [47] CLIP-ViT-G/14 Vicuna-13B 70.0 - - - -
DeepSeek-VL2-16B [89] SigLIP-SO400M-384 DeepSeekMoE 92.3 75.8 84.5 83.4 84.00
DeepSeek-VL2-27B [89] SigLIP-SO400M-384 DeepSeekMoE 93.3 78.1 86.0 84.2 85.40

Table 3. Comparison results on four widely evaluated datasets. T refers to our evaluation result using the official checkpoint.

10. Future Directions recognition, and understanding. In the future, we hope to
explore more complex applications based on tokenFD, such
as multimodal RAG, controllable text erasure, controllable

In this paper, we use some simple prompts to explore the : . ’
text generation, and general image understanding.

effectiveness of the visual foundation model, TokenFD, in
fine-grained scene tasks, including segmentation, retrieval,



=5

65T 6%
ROUNDIIG ADY

NET TOTAL
Cash

CHANGE

S’
User User

Analysis the 2023 data and find out which are 2 q P 2 . . B [

TS e e e T What is the total amount of this invoice? ‘l Recognize all text in the image 1
El Rancho COFFEE SHOP Dining Room

GPT-40  Brian Adams. ¢ GPT-40 4065 ¥ 5PT-40  TAQUERIA LOS COMPADRES
AUTHENTIC MEXICAN RESTAURANT
InternVL25-88 - 5. L L can ElRancho Coffee Shop Dining Room TAQUE

iXDA.ORG ¥ InternVL2.5-8B 56.00 3¢ InternVL2.5-8B LOS COMPAD AUTHENTIC MEXICAN

RESTAURANT
N El Rancho COFFEE SHOP Dining Room
TokenVL  Bryan Owens K TokenVL 5935 [ TokenVL  TAQUE LOS COMPAD AUTHENTIC

MEXICAN RESTAURANT

Figure 4. Visualization of TokenVL’s comparison with GPT-40, internvl2.5-8B on VQA tasks.

Method ‘ IIT{ Docgenome| ICI5| TotalText|
Park et al. [69] | 39.21 38.63 48.20 65.66
Kosmos2.5 [60] | 32.75 36.17 34.22 53.62
TokenVL 19.21 22.54 23.24 35.47

Table 4. Edit distance for full-image text recognition.
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