A. Proof of the Lemma 1

Lemma 2. Let the sample volume of the dataset be m, the

number of classes be C, the sample number per class be

balanced, and the entropy consumed by annotation be H.

Then, the expectation of correct labeled samples, i.e., m/, is
given by

, m

e

Proof. Since the numbers of samples per class are balanced,
the categories for each sample have C' equal possibilities.
The entropy of one sample is calculated by

H
m

e s.t. H € [0,mlogC]. (12)

11
H=-Y Zlog=
: ;Cogc
=log C.

Given that the samples demonstrate [.I.D., we can determine
that the total entropy equals

Hgym = mlog C.

When the reduction of entropy due to annotation is H, the
total entropy becomes

Hoym — H.

Then, after annotation, the number of possible states for each
sample can be written as

¢! = oMt
Then, the probability of correct labeling is
1

p T Hsum-—H
m

1
~ mlogC—H
e m

H
=em /C.
The expectation of correct labeling samples is
p_ M H
m = —em.
C

O

B. Proof of Theorem 1, Theorem 2, and Corol-
lary 1

Definition 1 (Uniform stability of single-task learning). A
single-task learning algorithm A has uniform stability 8
with respect to the loss function [if the following holds for
any training set S and for all i € {1,...,m}, where S\°
denotes the dataset with the i-th sample removed:

|L(A(S), S) — L(A(SY),)| < 8.

Definition 2 (Uniform stability of meta-learning). A meta-
algorithm A has uniform stability [3 with respect to the loss
Sunction 1 if the following holds for any meta-sample S and
foralli € {1,...,n}, D ~ 1, S ~ D™:

|L(A(S)(S™), 57) = LIA(SV)(5™), 5| < B.

Theorem 3 (Generalization error of entropy-limited WCT).
Let the sample volume of the dataset be m, the number of
classes be C1, the annotation entropy be H, and the single-
task learning algorithm A have uniform stability 5. Then the
generalization error Ry, (A) is bounded by the following
equation with probability at least 1 — ¢ for any 6 € (0,1),

Cy1n(1/6)

Rgen(A) < 28+ (4mp + M)\| 50

(13)
Proof. According to Theorem 5, under the conventional
supervised classification setting, the conventional single-
task learning algorithm A, i.e., WCT, has the following
generalization error upper bound,

In(1/3)
om

Under entropy-limited setting, Lemma 2 derives the number
of correct labeling samples. As indicated in Section 2.2,
some algorithms are robust to label noise. However, we
consider the worst-case scenario here, i.e., only samples
with correct labels are taken into account. As a result, we
replace m in the above equation with m/ given by Lemma 2,
ie.,

RgenA <28+ (4mfB + M)

kC21n(1/9)
2meH/m
Note that we don’t replace m in 4mf3, because it will be

asymptotically eliminated by S in the derivation of Corol-
lary 2. O

Rgen(A) <28+ 25 + (4’"5 + M)

Theorem 4 (Generalization error of entropy-limited
meta-learning). Let the sample volume of the dataset be
m, the number of classes per task be Cs, the number of
samples per class be k, the number of tasks be n, the annota-
tion entropy be H, the base-learner A has uniform stability
B, and the meta-learner A have uniform stability B Then
generalization error Rge,, (A) is bounded by the following
equation with probability at least 1 — ¢ for any ¢ € (0, 1),

kC21n(1/9)
QTTLSH /m
Proof. According to Theorem 5, under the conventional

supervised classification setting, the meta-learning algorithm
A, has the following generalization error upper bound,

Rgen(A) <28+ 253 + (4nf + M) . (14)

Ryen(A) < 2 4 (an 4 202010 o

The number of tasks n, in the worst-case scenario, satisfies

m

kCy

n =

Similar to the proof of Theorem 3, replace m in the above
equation with m’ given by Lemma 2, we have

kC21n(1/6)

Rgen(A) < 25 + 23 + (4713 + M) QmeH/m :

Similar to the proof of Theorem 3, we don’t replace n in
4np. O

Corollary 2. Let the base-level stability B ~ o(1/1/m), the
meta-level stability B ~ o(\/1/n), and the entropy resource
H be equal for each algorithm. Then, the meta-learning
algorithm A has a tighter generalization error upper bound
than the single-task learning algorithm A when

02 k<O (15)

Proof. According to Bousquet [1] and Maurer [38] et.al.,
the uniform stability 5 and 3 of algorithms decrease as the
dataset scale increases, typically satisfying 8 ~ o(y/1/m)
and 3 ~ o(y/1/n), respectively. To ensure that the gen-
eralization error formula holds with high probability, J is
typically minimized. When m is sufficiently large, these con-
ditions ensure that the generalization error of A is dominated
by
CyIn(1/6)
2meH/m

and the generalization error of A is dominated by

kC21n(1/4)

M .
2mefl/m

In Theorem 4, n is significantly underestimated. Therefore,
as long as kC3 < C4y, or even when kC3 ~ O(C}), the
meta-learning algorithm A admits a much tighter upper
bound on the generalization error. O

Theorem 5 (Generalization error of single-task learn-
ing [38]). For any data distribution D and training set S
with m samples, if a single-task learning algorithm A has
uniform stability 5 with respect to a loss function | bounded
by M, then the following statement holds with probability at
least 1 — ¢ forany § € (0,1):

In(1/0)

R(A,D) < R(A,S) + 28 + (4mB + M) 2m

Theorem 6 (Generalization error of meta-learning [38]). For
any task distribution T and meta-sample S with n tasks, if a
meta-algorithm A has uniform stability 8 and the inner-task

algorithm A(S) has uniform stability 8 with respect to a
loss function | bounded by M, then the following statement
holds with probability at least 1 — § for any § € (0,1):

(/) o,

R(A(S),7) < R(A(S), S)+2[+(4nf+M) o

C. Experimental Details

C.1. Dataset setup

Omniglot. The raw dataset contains 1628 classes, we split
the classes of training set, evaluation set, test set into 800:
400: 432. We use Omniglot in three scenarios. The first
scenario is in Section 2.2. We perform supervised few-shot
learning with label noise. We randomly mask the labels of
the samples in the training set according to the noise ratio
(i.e., 0%, 15%, 30%). Depending on the training method, we
can construct these raw data into task followed by Finn et al.
[15], or use them directly for whole class training followed
by Tian et al. [45]. The second scenario is in Section 2.3. We
perform supervised few-shot learning with heterogeneous
tasks. When constructing heterogeneous tasks, we sample
a variable number of classes, to ensure the difference in
the way of tasks (i.e., 5-20 way), and further to ensure the
heterogeneity. The third scenario is in Section 4.1. We
perform unsupervised few-shot learning. We follow the
protocol given by Hsu et al. [19].

Mini-Imagenet. The raw Mini-Imagenet contains 100
classes, we the split classes of training set, evaluation set,
test set into 64: 16: 20. We use Mini-Imagenet in three
scenario. The details of the setup of the three experimental
scenarios are the same as Omniglot. With the except that we
construct 5-10 way heterogeneous task in Section 2.3.

CIFAR-10, CIFAR-100, STL-10, Imagennet, and Tiny
Imagenet. For CIFAR-10, CIFAR-100, STL-10, Imagennet,
and Tiny Imagenet datasets, we follow the protocol given
by Zheng et al. [54]. They are used for unsupervised zero-
shot learning, so we mask all the labels in training set.

DomainNet. DomainNet is a domain adaption dataset. We
use it to evaluate algorithms’ ability of unsupervised zero-
shot domain adaption. It contains 6 domain with 345 classes
for each domain. We use one domain for test and the remain
5 domain for both training and validating. Note that when
constructing tasks, we sample classes from the same domain
and we mask all the labels in training set.

MobileNet40 and ShapeNetCore. ModelNet40 contains
12311 CAD models across 40 categories, primarily used for
3D shape classification and point cloud analysis. ShapeNet-
Core includes over 51300 3D models spanning 55 categories,
serving as a benchmark for 3D classification, segmentation,
and reconstruction. For the few-shot classification task, we
follow the settings given by Khan et al. [27].

C.2. Algorithm Setup

MINO. We use MINO in both unsupervised zero-
shot and few-shot scenario. In unsupervised few-shot
datasets, we follow the same backbone architecture given
by github.com/dragen1860/MAML-Pytorch. We set epoch,
inner-loop learning rate, outer-loop learning rate, meta-batch
size, inner-loop step, and number of sample per task, as
30000, 0.05, 0.001, 8, 5, and 50 respectively. For DBSCAN,
we set min_samples and eps as 15 and 1.0, respectively. In un-
supervised zero-shot datasets (except of DomainNet), we fol-
low the same backbone architecture given by github.com/xu-
JI/IIC, i.e., ResNet and VGG11. We set epoch, inner-loop
learning rate, outer-loop learning rate, meta-batch size, adap-
tion steps for evaluation and sub-sample size, as 80000,
0.001, 0.001, 8, 0, and 100 respectively. For DBSCAN , we
set min_samples and eps as 15 and 1.0, respectively. For
DomainNet dataset, we use ResNet-9 as backbone architec-
ture, which is the same as github.com/liyunsheng13/DRT.
The other configuration is the same as other unsupervised
zero-shot datasets. Note that for fair comparison, we keep
the network structure of other methods consistent with that
of MINO to ensure that the neural networks have the same
scale. As for the hyperparameters, we follow the settings
provided in the original paper.

WCT, MAML, ANIL, and MTL. In Section 2.2, Section
2.3, and Section 4.3, we use WCT, MAML, ANIL, and MTL
to perform experiments, on Omniglot and Mini-Imagenet
datasets. For MAML, we leverage the ”body” given by [48],
which has 4 convolution modules. Each module consist of
a 3 x 3 convolutions and 64 filters, followed by a batch nor-
malization, a ReLU nonlinearity, and 2 x 2 max-pooling.
We utilize the “head” followed the baseline classifier given
by Finn et al. [15]. For Omniglot, we used strided convolu-
tions instead of max-pooling. For ANIL, its difference with
MAML lies solely in the strategy for updating the head [39].
For WCT, we use the same neural network architecture and
learning configuration, except that its head is fixed, and the
length of the head equals the number of whole classes. For
MTL, we also maintain the same neural network architecture
and learning configuration, except that it uses a single-level
optimization strategy. In Section 2.3, for SHM, we train a
model for each way of tasks, and ultimately take the average
testing performance of the models. For DHM and MTL,
we train the model with the train set consisting of a mix-
ture of the heterogeneous tasks, and ultimately evaluating its
performance directly on the test set.

PsCo, Meta-GMVAE, UMTRA, and CACTUs. We
reuse the configuration given by Jang et al. [20],Lee et al.
[32],Khodadadeh et al. [28], and Hsu et al. [19], since our
test scenarios are the same as theirs.

ReSSL and IIC. In CIFAR-10, CIFAR-100, STL-10, Im-

ageNet, and Tiny ImageNet datasets, we reuse the config-
uration given by Zheng et al. [54] and Ji et al. [23]. In
DomainNet dataset, for a fair comparison, we use ResNet-9
as backbone and maintain the same learning configuration
as mentioned above.

MAE and NVAE. For a fair comparison, we use the same
backbone provided by Masci et al. [37], which has a similar
number of parameters as other models.

DeepCluster. We run DeepCluster for each unsupervised
zero-shot dataset, which we respectively randomly crop
and resize to the appropriate image size. We modify the
first layer of the AlexNet architecture used by the authors
to accommodate this input size. We follow the authors
and use the input to the (linear) output layer as the em-
bedding. These are 4096-dimensional, so we follow the
authors and apply PCA to reduce the dimensionality to
256, followed by whitening. The configuration is built
upon github.com/facebookresearch/deepcluster. In Domain-
Net dataset, we also use ResNet-9 as backbone.

BiGAN. We follow the BiIGAN authors and specify a uni-
form 50-dimensional prior on the unit hypercube for the
latent. They use a 200 dimensional version of the same prior
for their ImageNet experiments, so we follow suit for our
unsupervised zero-shot dataset. Our configuration is built
upon github.com/jeffdonahue/bigan. In DomainNet dataset,
we also use ResNet-9 as backbone.

D. Discussion and Future work.

Equal Classes Probability Assumption. We hold a bal-
anced classes probability assumption in Lemma 2, which
may raise scrutiny and challenge. Because in the unsu-
pervised setting, the samples included in the constructed
tasks are random. However, according the conclusion given
by Khodadadeh et al. [28], for a task T}, the probability that
all samples are in a different class is equal to

Oyl kC2 - (Cy - | — Cy)!

F= (C1 = Ca)! - (Cr - K)!

When C; > C5, we have p — 1, which implies that the
equal probability assumption holds.

Experiments Under Equal Entropy Conditions. Entropy
is not a directly utilized metric in the algorithm training
process. Instead, it represents the resources required for
annotation. Therefore, we leverage the label noise ration
given by Lemma 2, i.e.,

H
p:em/c:h

to infer the expected label noise in the dataset. We then use
this noised dataset for training different models to simulate
equal entropy conditions.

The Underestimated Number of Tasks n. In the worst-
case scenario, according to the definition in Theorem 4, the
number of tasks should be

m
kCy'

n =

However, in a typical unsupervised setting, the samples in
a task are independently and randomly sampled. Assuming
the total number of task samples is £C5 , the number of
different tasks we can construct is

(1;32) - (kcz)!(z!— 1:Co)l"

This number is significantly larger than what we use in the
paper. As a result, the actual generalization error bound
of meta-learning under limited entropy conditions is much
tighter than the one derived in Theorem 4. This reinforces
the conclusion given by Corollary 2.

Overhead. MINO incurs low computational overhead by
replacing existing components rather than adding new ones.
Specifically, it replaces CACTUs’ K-means with DBSCAN,
uses a dynamic head instead of a static one, and introduces
a lightweight meta-scaler based on batch-level linear com-
putation. As shown in Table 10, each component adds less
than 7% training overhead compared to CACTUs, while
achieving a 13.21% accuracy gain (see Table 4). Importantly,
all components are used only in training and do not affect
inference overhead.

Table 10. Per-sample latency (ms) on CIFAR-100 during training
and inference, compared with CACTUs.

Setting Training Latency (ms) Inference Latency (ms)
CACTUs 4.98 1.56
W/O DBSCAN 532 1034 1.54

1.57 10.01
1.56 1 0.00
1.57 10.01

W/O Meta-Learning (WCT) 4.26
W/O Meta-Scaler 529 1031
MINO (Ours) 5.51 10.53

Future Work. We will establish a more rigorous theoretical
framework. By improving the computation method for the
entropy of samples, this framework will no longer rely on
the equal classes probability assumption, enabling it to cover
datasets with arbitrary class probability distributions. At the
same time, based on the latest research [26, 35], we need to
incorporate the impact of label noise on the generalization
ability of the algorithm into this theoretical framework. This
allows us to go beyond considering only the worst-case sce-
nario in terms of sample size, as in Proof of Theorem 3, and
instead provide a tighter generalization error upper bound.

E. Related Work

Theoretical analysis of meta-learning. In recent years,
significant advances have been made in meta-learning
theory research. Studies have revealed important insights

about MAML’s fast adaptation mechanisms [16, 39],
while other research has demonstrated that well-designed
embeddings can potentially outperform meta-learning
approaches in few-shot classification tasks [45]. Further
investigations have established the independence between
meta-training and adaptation algorithms [36], and identified
specific conditions where baseline methods can exceed
meta-learning performance in few-shot classification
tasks [5]. Additional research has examined the implications
of class and novel class generalization in meta-learning [6],
while theoretical work has established upper bounds for
meta-learning generalization error [3, 4, 13, 14, 17, 25, 38].
This paper addresses two fundamental questions regarding
meta-learning: Under what circumstances does meta-
learning demonstrate superior performance compared to
alternative algorithms in few-shot classification, and what
underlying factors contribute to this advantage?

Unsupervised meta-learning. Unsupervised meta-
learning [19-21, 28, 32, 52] links meta-learning and unsu-
pervised learning by constructing synthetic tasks and extract-
ing the meaningful information from unlabeled data. For
example, CACTUs [19] cluster the data on the pretrained
representations at the beginning of meta-learning to assign
pseudo-labels. Instead of pseudo-labeling, UMTRA [28]
and LASIUM [29] generate synthetic samples using data
augmentations or pretrained generative networks like Big-
BiGAN [10]. Meta-GMVAE [32] and Meta-SVEBM [30]
represent unknown labels via categorical latent variables
using variational autoencoders [46] and energy-based mod-
els, respectively. In this paper, we leverage the sights under
entropy-limited supervised setting, improve meta-learning
algorithm’s robustness against label noise and heterogeneous
tasks.

