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Figure 1. Additional qualitative comparison of garment recon-
struction.

In this Supplementary Material, we provide the details of
evaluation metrics in Section. 1, and in Section. 3, we pro-
vide more visualization of Any2AnyTryon generation re-
sults.

1. Validation Metrics

1.1. Garment Reconstruction

We follow the existing SOTA garment reconstruction
method TryOffDiff [17] and leverage the full-reference
metrics SSIM [18], MS-SSIM, and CW-SSIM to vali-
date the alignment between the reconstructed garment and
the ground truth, while utilizing the metrics LPIPS [19],
FID [10], CLIP-FID, KID [2], and the Deep Image Struc-
ture and Texture Similarity (DISTS) [8] to evaluate the qual-
ity and fidelity of the generated images.

1.2. Virtual Try-on Generation

Our Any2AnyTryon supports both model-free VTON and
VTON generation. In the experimental section, we con-
duct a quantitative comparison of both tasks. For model-
free VTON generation, we follow MagiClothing [4] and
use MP-LPIPS and CLIP-I to measure the consistency of
the garments with the generated outfitted model results.
To make our quantitative comparison more compelling,
we introduce more recent benchmarks, DiffSim [16] and
FFA [11], to further enhance the validity of the evaluation.

For VTON generation, for paired datasets with ground
truth, we use LPIPS [19], SSIM [18], FID [10], and KID [2]
to evaluate the quality and faithfulness of the VTON gener-
ation. For unpaired datasets without ground truth, we use
FID [10] and KID [2] to validate the generation quality. We
also include user study for VTON evaluation. We randomly
sampled 15 cases from the test dataset and recruited 30
volunteers. Each volunteer was shown the outputs of GP-
VTON, IDM-VTON, CatVTON, FitDiT and our method,
and asked to select the best result. They received 66, 54,
77, 121, and 132 votes, respectively. Our method’s try-on
results received the highest score, further validating model
effectiveness.

2. Implementation Details

2.1. Dataset Construction

The LAION-Garment dataset integrates several established
virtual try-on (VTON) benchmarks through systematic cu-
ration: VITON-HD [5] (11,491 pairs), DressCode[14] Up-
per (13,563 pairs), DressCode Dresses (27,678 pairs), and
DressCode Lower (8,689 pairs), DeepFashion2[9] Shop,
LRVS-Fashion[12]. We removed test set images and low-
quality samples from the dataset. To construct mask-
free image pairs, we implement an automated inpaint-
ing pipeline combining multi-modal mask generation and
context-aware garment replacement. Mask regions are gen-
erated through a hybrid approach utilizing CatVTON’s Au-
tomasker [6] and SAM segmentation [15], deliberately pre-
serving non-garment elements such as hairstyles and back-
ground structures. Garment replacement is executed via
FLUX-ControlNet-Inpainting [1] under unconditional gen-
eration settings, followed by background consistency op-
timization through selective region repainting to maintain
spatial coherence. Representative samples demonstrating
this pipeline are provided in Fig.2. We create explicit in-
structions for each task. For better understanding, we pro-



Figure 2. LAION-Garment examples.
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Figure 3. Additional garment reconstruction results in the wild.

vide an example for the Virtual Try-On task: the instruc-
tion template is “The set of three images display a model, a
garment, and the model wearing the garment. <IMAGE1>

shows a person wearing the garment. <IMAGE2> de-
picts the garment. <IMAGE3> illustrates <IMAGE1> with
<IMAGE2> worn by the model”. For the more challeng-
ing task of Virtual Try-on in layers, the instruction clearly
specifies actions such as “drape the coat over the existing
outfit”.

We also systematically conduct human evaluation on
dataset quality through five metrics: pose spatial alignment
fidelity, garment-agnostic region preservation, textile pat-
tern consistency, photorealism, and perceptual quality.

2.2. Training Protocol and Inference Configuration

The model employs Prodigy optimization [13] (weight de-
cay=0.01) with text embedding dropout (p=0.1) for regu-
larization. Architectural modifications focus exclusively on
the base transformer through LoRA adapters (rank=256, al-
pha=256), while maintaining frozen VAE and text encoder.
Inference follows the base model’s native scheduler config-
uration with default steps.

For fair benchmarking against prior mask-based ap-
proaches, evaluation metrics are computed using models
trained on fixed-resolution datasets. Although LAION-
Garment contains variable-resolution samples to enhance
mask-free generalization, conventional methods’ architec-
tural constraints (fixed input dimensions and explicit mask
dependencies) prevent direct training on our dataset without
compromising benchmark integrity.
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Figure 4. Additional garment reconstruction results in the shop.

Figure 5. Additional model-free virtual try-on results in the shop.



Figure 6. Additional virtual try-on results in the shop.

3. More VTON Generation Results
3.1. Model-free Virtual Try-on

In the main paper, we presented a quantitative compari-
son between Any2AnyTryon and other baseline methods for
Model-free Virtual Try-on. To further showcase the high-

quality generation results of Any2AnyTryon on the Model-
free Virtual Try-on task, we provide additional visualiza-
tions of the generated outfitted model images in Fig. 5. To
highlight the generated results, we use the user instruction
”model in the shop.” The results demonstrate that, whether
it’s for the upper garment, lower garment, or overall outfit
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Figure 7. Sequential try-on.
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Figure 8. Comparison with Wear-Any-Way and StreetTryOn.

Figure 9. Try-on results over multiple runs with different seeds.

change, our method can consistently achieve high-fidelity
VTON generation.

3.2. Virtual Try-on

Table 1. Variability in virtual try-on numerical results.

Model |  LPIPS| SSIM? FID, KID,

paired ‘0.0898i0.0013 0.8434+0.0028  7.19440.133  0.941+£0.070

unpaired ‘ 8.901£0.229  1.09540.100

In Fig. 6, we display more generation results of

Any2AnyTryon in the Virtual Try-on task. We pro-
vide six different models and six garments with distinct
styles, and our Any2AnyTryon produces 36 different, ra-
tional, high-quality outfitted results. This proves that our
Any2AnyTryon can stably realize impressive VTON gen-
eration. Fig. 7 shows that model and garment maintain
consistent during sequential try-on. Furthermore, Fig. 8
shows that our method surpasses both Wear-Any-Way [3]
and StreetTryOn [7] in performance. In Tab. I, we report
the mean and standard deviation (mean =+ std) to quantify
the variability in virtual try-on numerical results. Fig. 9
illustrates diverse try-on outcomes generated using differ-
ent random seeds. As demonstrated in Tab. | and Fig. 9,
our model consistently produces high-quality try-on results
across varying seeds, highlighting its robustness.

3.3. Garment Reconstruction

To further evaluate the quality of garment reconstruction,
we provide additional qualitative comparison results in
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Figure 11. Text-driven task switching.

Fig. 1. The garments reconstructed using our method in
Any2AnyTryon preserve the details of the input models’
garments better than those reconstructed by TryOftDiff, be-
sides, we provide more garment generation in Fig. 4. Ad-
ditionally, to further demonstrate the stability and general-
ization ability of Any2AnyTryon in garment reconstruction,
we display results of garment reconstruction for in-the-wild
model images in Fig. 3. The results show that our method
can still generate impressive garment results even for more
challenging inputs.

3.4. Virtual Try-on in Layers

We present Virtual Try-on in layers generation results for
in-the-wild model images in Fig. 10. The results demon-
strate that, even in complex scenarios such as models in
the wild, our Any2AnyTryon still produce rational, high-
quality outfitted model images, proving the effectiveness of
our method.

3.5. Text Instruction

Fig. 1 | demonstrates our method’s capability to perform im-
pressive try-off, editing and more tasks from same input
image by leveraging different text prompts with appropri-
ate position embeddings. The textual guidance significantly
influences the output, facilitating precise subject extraction
and controllable image editing.

4. Limitation

Just like most diffusion-based models, the model may show
some unexpected outputs because the model inherit im-
age generation ability from pretrained text-to-image model.
Besides, the proposed methods may fail when encounter-
ing with extreme inputs like unrecognizable model, strange
poses and low quality image.
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