Cooperative Pseudo Labeling for Unsupervised Federated Classification

Supplementary Material

1. Algorithm Flow of FedCoPL

We summarize the procedure of FedCoPL in Algorithm 1.

Algorithm 1 FedCoPL

Input: number of communication round 7', client number
K, unlabeled dataset { Dy}, client participating rate
R, number of local update epochs E, batch size B,
learning rate 7, pseudo labels update interval Q).
Output: the global visual prompt P¥ and personalized tex-
tual prompts { P/} .
1: Initialize PV, {PLHE |
2: m <+ max(|R- K], 1)
3: for communication round r = 1,2,--- , T do
4:  ifr % Q=0 then

5: # cooperative pseudo labeling
6: fork=1,..,K do
7: Obtain the estimated set Dz“ with Eq. (2).
8: Obtain the estimated statistics U, r with Eq. (3).
9: Obtain Dy, by selecting the most confident sam-
ples according to the capacity Uy.
10: end for
11:  end if
122 M < Randomly select a subset containing m

clients.
13:  #local update
14:  for each client k € M do

15: Initialize local visual prompt P} < P*

16: for each batch B; = {x,3} € Dy do

17: P« Py —nVL(P!;B;)

18: Pl « Pl —nVL(PL;B;) # L is cross-entropy
loss

19: end for

20:  end for
21:  Obtain aggregated visual prompt P" with Eq. (4).
22: end for

2. Drift Diversity

Following [5], we employ drift diversity to assess magni-
tude differences, which is defined as follows:
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where P/ is updated prompt of client & in round  and P™~!
is aggregated prompt on the server in round r — 1.
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Figure 1. Drift diversity and cosine distance of prompts among
clients during training in DTD [2] dataset. The differences ob-
served in textual prompts are significantly greater than those found
in visual prompts.
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Figure 2. Drift diversity and cosine distance of prompts among
clients during training in RESISC45 [1] dataset.

Besides, we measure the differences in both textual and
visual prompts across all clients using drift diversity [5] and
cosine distance in RESISC45 and DTD datasets, which re-
spectively reflect the diversity in the amount and direction
of prompts updates among clients, as shown in Figure 1
and Figure 2. These results prove that the differences in
textual prompts are significantly greater than those in vi-
sual prompts, which confirms our hypothesis that visual
prompts tend to be more similar, while textual prompts ex-
hibit greater variability.

3. More Experimental Details

Dataset setup. We evaluate our approach on six diverse
visual classification datasets. Table | summarizes the key
statistics of each dataset, including the original task do-
main, number of classes, and the number of training and
testing samples. We simulate data heterogeneity using both
quantity-based and Dirichlet-based label skews. In the
quantity-based setting, each client is assigned a fixed num-
ber of classes: 10 for DTD, 58 for RESISC45, 66 for CUB,
30 for UCF101, 2 for CIFAR-10, and 20 for CIFAR-100.
For the Dirichlet-based label skew, we generate client data
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Figure 3. (a) and (b) depict label skews of Dirichlet-based label skews and (c) presents the quantity-based label skew.

Table 1. The detailed statistics of datasets used in experiments.

Dataset Task Classes  Training Size  Testing Size
CUB Image classification 200 5,594 5,794
RESISC45  Scene classification 45 6,300 25,200
UCF101 Action recognition 101 7,639 3,783
DTD Texture recognition 47 2,820 1,692
CIFAR10 Image classification 10 50,000 10,000
CIFARI00 Image classification 100 50,000 10,000

using Dirichlet distributions with concentration parameters
B = {0.1,0.05}. To illustrate the label distribution under
each setting, we visualize the client-level class allocations
on CIFAR-10, as shown in Fig. 3.

Implementation details. All input images are resized
to 224 x 224 and partitioned into 14 x 14 patches with an
embedding dimension of 768. We incorporate deep visual
prompts by appending trainable prompts of size 5 x 867 to
the output of each transformer layer in the visual encoder.
For the text encoder, we use prompts of length 16 with a
dimensionality of 512. The batch size is set to 64 for both
training and evaluation.

4. More Experiments Results

Results under different image encoder backbones. We
further conduct experiments to evaluate the impact of dif-
ferent image encoders on model performance. The com-
parison results using RN50 are summarized in Table 2.
These results reveal that as the zero-shot performance of the
pre-trained image encoder declines, the performance of all
methods deteriorates sharply. Notably, on the CUB dataset,
all baseline methods achieve lower accuracy than the zero-
shot baseline, whereas our proposed method surpasses the
zero-shot accuracy. Overall, our approach consistently out-
performs prior methods, underscoring the effectiveness of
our strategy in enhancing the performance of smaller im-
age encoders. These findings highlight the robustness of
FedCoPL in real-world federated learning scenarios, partic-
ularly under limited computational resources.

Table 2. Experiments using CLIP RN50 as base model un-
der Dirichlet-based label skews (8 = 0.1) across four datasets.
FPL [8] is adopted as the baseline pseudo labeling (PL) method.

Method PL DTD RESISC45 UCF101 CIFAR10
Zero-shot CLIP - 41.62 52.12 65.13 74.80
PromptFL [4] FPL 4236 56.16 62.90 78.01
PromptProx [7]  FPL  43.12 56.54 64.37 78.77
pFedPrompt [3] FPL  43.65 57.13 64.97 79.69
FedOPT [6] FPL 4552 58.94 65.54 80.13
FedCoPL CoPL 51.83 70.78 76.48 84.85

Table 3. Pseudo label accuracy (%) of different methods with
Dirichlet-based label skews (8 = 0.1, 8 = 0.05) and quantity-
based label skew on various datasets.

Method DTD RESISC45 CUB UCF101 CIFARIO CIFARI00
Dirichlet-based label skew (3 = 0.1)

FPL 66.36 71.06 7797 80.31 91.02 83.05

CPL 69.72 78.21 80.64  81.17 92.18 84.81

CoPL (Ours) 78.74 85.73 89.30 85.12 96.07 88.13
Dirichlet-based label skew (8 = 0.05)

FPL 63.54 72.51 76.72  78.19 90.26 81.87

CPL 65.45 76.68 78.24  80.71 90.37 82.08

CoPL (Ours) 75.82 85.09 88.62  83.90 95.26 86.97

Quantity-based label skew

FPL 55.18 61.02 62.79  65.44 87.79 76.18

CPL 56.50 64.90 66.92  68.66 88.50 76.91

CoPL (Ours) 68.29 78.87 7921  79.76 94.24 85.03

Comparison of pseudo-label accuracy. As shown in
Table 3, we report the accuracy of various pseudo labeling
methods based on CLIP’s zero-shot predictions in Dirichlet-
based and quantity-based label skews. The proposed pseudo
label selection strategy consistently outperforms baseline
approaches across multiple datasets. These results under-
score the effectiveness of the global pseudo label alloca-
tion strategy, which provides a robust foundation for subse-
quent model training. By explicitly accounting for global
class distributions and aggregating client-level pseudo label
distributions, our method effectively alleviates label skew
across clients and enhances the consistency of assigned



Table 4. Performance (%) of FedCoPL under different values of hyperparameter 7 with Dirichlet-based label skews (8 = 0.1) on four
datasets (72 = 0.50).

T1 0.10

DTD 55.89
RESICS45  75.29
CIFARI0  83.38
CIFAR100 72.14

0.20

55.92
75.15
80.77
72.64

0.30

56.01
74.92
82.84
72.12

0.40

56.13
75.31
85.34
72.29

0.44

58.90
75.03
92.68
72.54

0.46

59.76
75.84
93.83
72.89

0.48

60.62
76.31
95.24
73.31

0.50

60.89
75.76
95.38
73.59

0.52

60.92
75.61
95.52
73.01

0.54

60.53
74.88
95.71
72.65

0.56

60.02
74.07
94.10
73.18

0.60

54.85
71.14
90.41
72.78

0.70

51.09
61.27
77.56
72.21

0.80

47.56
54.98
49.76
73.05

0.90

36.16
47.58
55.59
68.44

Table 5. Performance (%) of the FedCoPL under different values of hyperparameter 72 with Dirichlet-based label skews (5 = 0.1) on four
datasets (71 = 0.50).

Ty 0.10 0.20 0.30 0.40 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.60 0.70 0.80 0.90

DTD 58.04 58.07 58.38 5798 58.10 5892 5993 60.89 60.25 59.67 58.99 5744 56.67 4922 37.92

RESICS45 7192 75.12 75.82 75.07 74.85 75.12 7554 7576 75.04 7437 73.89 7243 6625 6449 46.80

CIFARI10 81.01 81.92 83.87 82.73 94.08 9493 9522 9538 95.60 9519 94.68 88.36 71.55 4233 50.92

CIFARIOO 7233 7239 7235 7120 71.33 7248 72770 7359 73.62 7281 7197 71.13 7137 7140 67.20
(a) DTD (b) RESICS45 (c) CIFAR10 (d) CIFAR100
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Figure 4. Pseudo label accuracy of our method with and without global pseudo label allocation on four datasets.

pseudo labels. global pseudo label allocation strategy to validate its ef-
fectiveness. As shown in Fig. 4, we present the accuracy
of pseudo labels with and without the global pseudo la-
bel allocation. The results show that global allocation not
only achieves higher pseudo label accuracy but also leads
to more stable and consistent convergence during training.
This suggests that global pseudo label allocation among
clients helps mitigate the influence of label skews, which
are common challenges in federated learning. Moreover,

Sensitivity analysis of hyperparameters 7; and 75. To
demonstrate the robustness of our method with respect to
hyperparameter selection, we conduct experiments using a
range of values for 7 and 75 on the DTD, RESISC45, CI-
FAR10, and CIFAR100 datasets. The results, summarized
in Table 4 and Table 5, show that our method exhibits strong
insensitivity to the choice of 71 and 7. Specifically, across
71 € {0.44,0.46,0.48,0.50,0.52,0.54,0.56} (with 75 =

0.50) and 7 € {0.44,0.46,0.48,0.50,0.52,0.54,0.56}
(with 71 = 0.50), our approach consistently achieves ap-
proximately 60% on DTD, 76% on RESISC45, 95% on CI-
FAR10, and 73% on CIFAR100. This stable performance
highlights the method’s robustness and its capacity to de-
liver reliable results across varying hyperparameter settings.
Notably, in our experiments, we did not perform extensive
tuning to identify the optimal values of 71 and 7. Instead,
we simply set both to the default value of 0.5, which may
not represent the best possible configuration. This further
emphasizes the effectiveness of our method, even without
fine-grained hyperparameter selection.

Ablation study on global allocation of pseudo labels.
In this subsection, we conduct an ablation study on the

improved pseudo label quality highlights the practical ben-
efits of the proposed global allocation strategy.
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