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CopyrightShield: Enhancing Diffusion Model Security Against Copyright
Infringement Attacks

Supplementary Material

1. Proof of Equation (3)001

Firstly, we discuss the data attribution related to logistic re-002
gression. For a training set S = {z1, . . . , zn : zi = (xi ∈003
Rd, bi ∈ R, yi ∈ {−1, 1})}, the model parameters θ∗(S)are004
determined by minimizing the log-loss:005

θ∗(S) := argmin
θ

∑
(xi,yi)∈S

log
[
1 + exp(−yi · (θ⊤xi + bi))

]
(1)006

For data attribution in this simple situation, we can use the007
Newton step data attribution τNS to evaluate the approxi-008
mate leave-one-out influence of training data zi on model009
output, as follows depicted:010

τNS(z)i :=
x⊤ (

X⊤RX
)−1

xi

1− x⊤
i (X⊤RX)

−1
xi · p⋆i (1− p⋆i )

(1− p⋆i )

(2)011
where X represents the matrix of stack inputs xi, p∗i =012
(1 + exp(−y · f(zi; θ∗)))−1 is the predicted correct-class013
probability at θ∗ and R is a diagonal n × n matrix with014
Rii = p∗i (1− p∗i ). After defining the tns for logistic regres-015
sion, we aim to apply this method to attribution in diffusion016
models. To achieve this, it is necessary to linearize the non-017
linear diffusion model. Using Taylor expansion, the model018
can be expanded around the parameter θ∗:019

f̂(z; θ) := f(z; θ⋆) +∇θf(z; θ
⋆)⊤(θ − θ⋆) (3)020

Thus, the model can be regarded as a linear model with021
∇θf(z; θ

∗) as the variable, allowing the trained model to022
be represented using Eq.(1):023

θ⋆(S) = argmin
θ

∑
(gi,bi,yi)

log
[
1 + exp

(
−yi · (θ⊤gi + bi)

)]
(4)024

where gi = ∇θf(zi; θ
∗) and bi = f(zi; θ

∗) −025
∇θf(zi; θ

∗)⊤θ∗. Similarly, Eq.(4) can be considered as a026
logistic regression on the gradient. However, due to the027
large dimensions of model, it is required dimensionality re-028
duction, as Eq.(??). The theoretical basis for dimensionality029
reduction is the Johnson-Lindenstrauss lemma, which is de-030
fined as: Lemma 1: For any 0 < ϵ < 1 and any integer n,031
there exists an integer k = O( logn

ϵ2 ) such that for any set032
of n points in a high-dimensional Euclidean space Rd, here033
exists a linear mapping f : Rd −→ Rk such that for all034
points u, v in the set, the following holds:035

(1− ϵ) ∥u− v∥2 ≤ ∥f(u)− f(v)∥2 ≤ (1+ ϵ) ∥u− v∥2
(5)036

where ϵ represents a small positive number that controls the 037
degree of distortion in the distances, n represents the num- 038
ber of points in the original set, k represents the dimension 039
of the lower-dimensional space, and ∥·∥ represents the Eu- 040
clidean distance. 041

Therefore, we propose introducing P ∼ N (0, 1)d×k, 042
which can reduce dimensionality while preserving the prop- 043
erties of the inner product. As a result, the high-dimensional 044
features of the model can be retained after dimensionality 045
reduction. Thus, we consider the projected results as the in- 046
put for logistic regression, where X represents the stacked 047
projected gradients. Empirically, it has been observed that 048
the denominator and the diagonal matrix R have minimal 049
impact on the estimation results. Therefore, they are adap- 050
tively ignored, leading to the attribution score estimation 051
given by: 052

τ(z, S) := ϕ(z)⊤(Φ⊤Φ)−1Φ⊤Q (6) 053

2. Algorithm of Copyright Attribution Score 054

We provide the algorithm of copyright attribution score in 055
Algorithm 1: 056

3. Details about the Comparison Methods 057

3.1. Poisoned Data Detection Comparison Methods 058

The main comparison methods for detecting poisoned sam- 059
ples include three SoTA data attribution methods. The 060
TRAK [? ] (Tracing with the Randomly-projected After 061
Kernel) method leverages model linearization and random 062
projection for dimensionality reduction, combined with the 063
Newton approximation method, to estimate the influence of 064
training data on model predictions. TRAK enables accu- 065
rate data attribution in large-scale non-convex settings while 066
maintaining computational efficiency, significantly reduc- 067
ing the number of model training iterations required by tra- 068
ditional methods. 069

Journey TRAK [? ] proposes a data attribution frame- 070
work for diffusion models, which quantifies the influence 071
of training data on the final image distribution by analyz- 072
ing each step of the generative process. The method lever- 073
ages the TRAK algorithm to efficiently compute attribution 074
scores and evaluates the accuracy of the attributions through 075
counterfactual validation. 076

D-TRAK, a novel data attribution method for tracing the 077
influence of training data on the outputs of diffusion models, 078
constructs a gradient projection matrix using theoretically 079
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Algorithm 1 Copyright Attribution Score

1: Input: Attacked model θ∗, Training dataset S = {z1, z2, ..., zN}, Copyright infringement output x0 and captions
Tpoison = {t1, t2, ..., tn}, Projection dimension k.

2: Output: Copyright attribution score τc
3: τc(zi,x0) = ∇θfspatial(zi,x0; θ)

⊤ ·∆θ(zi) ▷ Copyright attribution score
4: for i ∈ {1, . . . , n} do
5: mi = SAM(x0, ti)
6: Mpoison = {m1,m2, . . . ,mn} ▷ Spatial masks of copyright semantic features
7: end for
8: for i ∈ {1, . . . , N} do
9: P = N (0, 1)p×k ▷ Random projection matrix

10: ϕi = PT∇θL(zi, θ∗) ▷ Gradient features of the projected sample zi
11: end for
12: Φ = [ϕ1, ϕ2, . . . , ϕN ]T ▷ Stacked projected gradients
13: for i ∈ {1, . . . , N} do
14: ∆θ(zi) = P (ΦΦ⊤)−1ϕi = P (ΦTΦ)−1P⊤∇θL(zi, θ∗) ▷ Compute the parameter update changes
15: ∇θfspatial(zi,x0; θ) ▷ Compute the gradient of objective function
16: τc(zi,x0) = ∇θfspatial(zi,x0; θ) ·∆θ(zi)
17: end for
18: return τc(S,x0) = [τc(z1,x0), τc(z2,x0), . . . , τc(zN ,x0)]

unsound loss functions, such as squared loss and norm loss,080
leading to significantly improved attribution performance.081
D-TRAK outperforms existing attribution methods across082
multiple datasets and models, particularly exhibiting supe-083
rior performance in non-convex settings.084

The three aforementioned methods all utilize the Linear085
Datamodeling Score (LDS) to evaluate the effectiveness of086
data attribution methods. LDS assesses the accuracy of at-087
tribution methods by calculating the Spearman rank correla-088
tion coefficient between the model’s actual outputs and the089
predicted outputs derived from the attributions.090

Given a training dataset D, a model output function091
F (x, θ)), and a corresponding data attribution method τ ,092
the computation of LDS is defined as follows:093

LDS(τ, x) ≜ ρ ({F(x; θ∗(Dm)) : m ∈ [M ]} ,
{gT (x,Dm;D) : m ∈ [M ]})

(7)094

where ρ represents the the Spearman rank correlation co-095
efficient, Dm represents a randomly sampled subset from096
the training dataset D, and gτ (x,Dm);D refers to the pre-097
dicted output based on the attribution method τ . After thor-098
ough experimentation, we set the threshold for detecting099
poisoned samples in LDS using three methods to 0.3.100

3.2. Defense Comparison Methods101

Since there are currently no dedicated defense methods102
specifically designed for copyright infringement attacks, we103
adopt two SoTA backdoor defense methods as comparative104
baselines. TERD [? ] unifies the modeling of existing105
attacks to derive an accessible reverse loss and employs a106

two-stage trigger inversion strategy: first, it estimates the 107
trigger roughly by sampling noise from a prior distribution, 108
and then refines the estimate using a differential multi-step 109
sampler. Based on the inverted triggers, TERD proposes a 110
backdoor input detection method from the noise space and 111
introduces a novel model detection algorithm that identi- 112
fies backdoored models by calculating the KL divergence 113
between the inverted distribution and the benign distribu- 114
tion. Additionally, TERD demonstrates strong adaptabil- 115
ity to other models based on stochastic differential equa- 116
tions (SDEs). T2IShield [? ], designed to detect, local- 117
ize, and mitigate backdoor attacks in text-to-image (T2I) 118
diffusion models, is based on the discovery of the ”assim- 119
ilation phenomenon,” where backdoor triggers cause the 120
cross-attention maps of other tokens to become assimi- 121
lated. Leveraging this phenomenon, the authors propose 122
two backdoor sample detection methods: Frobenius Norm 123
Thresholding (FTT) and Covariance Discriminant Analy- 124
sis (CDA). FTT performs coarse-grained differentiation of 125
backdoor samples by calculating the Frobenius norm of the 126
attention maps, while CDA captures fine-grained structural 127
correlations between attention maps using covariance matri- 128
ces. Additionally, T2IShield propose a binary search-based 129
trigger localization method and mitigate the effects of back- 130
door attacks through existing concept editing techniques. 131

4. Additional Experiment Details 132

4.1. Trigger Prompts 133

Based on the prompt configuration in SilentBadDiffusion [? 134
] , we set the prompt as follows when generating poisoned 135
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images:136
①Pokemon Dataset: Identify key visual elements from137

the provided Pokemon image. Each phrase should be up138
to 4 words long. Ensure the phrases encompass various139
elements. For example, ”An image with helmet-like head,140
sharp scythe arms, strong segmented legs, pointed tail tip,141
large expressive eye, broad back shell.”142

②Midjourney Dataset: Identify salient parts/objects of143
the given image and describe each one with a descriptive144
phrase. Each descriptive phrase contains one object noun145
word and should be up to 5 words long. Ensure the parts146
described by phrases are not overlapped. Listed phrases147
should be separated by comma. For example, ”An im-148
age with Cowboy hat, denim shirt, field background, rolled149
sleeves, vintage effect, buttoned collar, leather belt, cloudy150
sky, tall grass.”151

Based on this prompt, we can extract features of the poi-152
soned samples. This prompt also serves as the infringement153
trigger once the copyright infringement attack is executed.154
The CopyrightShield method utilizes this trigger to segment155
poisoned samples and complete the detection process.156

4.2. Implementation Details for CopyrightShield157

In our approach, we use GroundingDINO [? ] as the model158
for detecting copyright features and SAM [? ] as the seg-159
mentation model post-detection. Considering the perfor-160
mance of diffusion models, all experiments, except those161
examining the impact of different diffusion model versions162
on defense, are conducted using Stable Diffusion V1.4. For163
the SSCD method in the objective function, we employ164
SSCD/Disc-MixUp[? ].165

To account for potential modifications to model param-166
eters by attackers, we use standard parameter settings. The167
optimizer is AdamW with a learning rate of 1 × 10−5. Ex-168
periments are conducted on an NVIDIA RTX 4090 GPU169
with a batch size of 8. Each attack has an epoch limit of 100.170
If the attack succeeds within 100 epochs, the corresponding171
metrics are recorded. If not, the FAE is set to 100, and the172
CIR is calculated using the model trained for 100 epochs.173
For the diffusion model’s hyperparameters, the guidance174
scale is set to 7.5, controlling the influence of textual or175
other conditions on the generation process. The diffusion176
steps are set to 1000, as increasing the steps enhances the177
memory of the correspondence between poisoned prompts178
and features, facilitating the detection of poisoned samples.179

5. Additional Experiment Results180

5.1. Defense Results181

As shown in Fig. 1, the experimental results demon-182
strate that CopyrightShield effectively prevents copyright183
infringement attacks by regenerating images similar to184
copyright features without compromising image quality.185

Figure 1. Visualization of defense performance for different meth-
ods and datasets.

Table 1. Ablation study of CopyrightShield.

Model
Pokemon COYO+Midjourney

CIR(%)/FAE CIR(%)/FAE
λ = 0.05 0.339 / 76.31 0.237 / 78.25
λ = 0.1 0.318 / 84.13 0.249 / 83.66
λ = 0.15 0.352 / 74.26 0.298 / 75.59

CopyrightShield 0.305 / 85.93 0.217 / 86.42

It avoids reducing SSCD by maintaining high generation 186
quality. 187

5.2. Ablation Results 188

Based on Eq.(??), we conducted ablation experiments on 189
the penalty term. We compared a fixed penalty coefficient 190
with the dynamic penalty sparsity in CopyrightShield. The 191
experiments demonstrate that, compared to the best per- 192
forming fixed coefficient, CopyrightShield’s defense perfor- 193
mance improved by 4.3%/2.1% and 12.8%/3.3% under two 194
attack scenarios, respectively. Thus, the dynamic penalty 195
term can adaptively control the extent of gradient descent 196
during training, thereby enhancing defense capabilities. 197

The code of CopyrightShield can be seen in 198
https://anonymous.4open.science/r/CopyrightShield-75C1 199
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